
CS 40 | January 8, 2024

Cloud Infrastructure and
Scalable Application Deployment

“If you’re at Stanford touting yourself an entrepreneurial genius with your app
about antagonizing your classmates, you had better actually bring the bacon to
your supposed technology. Because you have more than your founding team’s
worth of classmates who hate your guts, but can actually program.”

– commenter “doctorpangloss” on Hacker News
August 28, 2023

Course Information

About Us: Teaching Team

Aditya Saligrama
Instructor || saligrama@stanford.edu

BSCS ‘24, MSCS ‘25 (Systems/Security)
SWE @ Verkada, Lacework, Uptycs, Akamai

Applied Cyber President

Cody Ho
Instructor || codyho@stanford.edu

Symsys ‘24, MSCS ‘25 (AI)
ML @ OpenAI, Tatsu Lab, Infosys

Applied Cyber Vice President

Ben Tripp
Teaching Assistant || btripp@stanford.edu

Symsys ‘25 (AI)
SWE @ Azure, CISA, DevOps & cloud consulting

Applied Cyber Projects Lead

mailto:saligrama@stanford.edu
mailto:codyho@stanford.edu
mailto:bttripp@stanford.edu

About Us: Advisors

Mike Abbott
Advisor

EVP Software & Services @ GM
fmr VP Eng (Cloud Services) @ Apple, Twitter

Instructor CS153, CS349D

Christos Kozyrakis
Faculty Sponsor

Professor EE/CS @ Stanford
Cloud computing research
Instructor EE180, CS349D

About You

Topics you’re interested in:

● Kubernetes

● ML/AI applications

● Evaluating cost/performance
across cloud environments

● Security, privacy, and
observability

Prerequisites

● Programming maturity up to CS107

● Familiarity with the command line, version control, and basic development
tools to the level of CS45/CS104. Tools include:
○ TUI editors: vim, emacs, or nano
○ Git/GitHub, including branching and pull requests
○ Language and OS package managers: e.g., pip, apt, homebrew

● Prior web development or networking experience helpful but not required
○ We’ll run a web basics section on Wednesday 1/10 at 8pm (Zoom/recorded)

Please reach out if you have any questions about your readiness for CS40!

What you’ll learn

Why CS40

● Stanford CS courses teach foundational technical skills, but less on building
projects from scratch with robust and scalable architecture
○ Course final projects usually involve building web or mobile apps or Jupyter Notebooks

● Before CS40: “I built an app with a frontend and a backend”
● After CS40: “My app can handle lots of users at minimal cost”

● These skills are broadly applicable to all technical careers (academic,
industrial, entrepreneurial) and even to hobby projects!

Why Cloud

● Before ~2004, deploying web apps required buying physical servers or
renting datacenter server capacity
○ Inflexible (what if you suddenly need more capacity?), and not very redundant
○ Needs a lot of manual infrastructure management: installing required software, keeping

base software up to date, updating the application itself

● Today: pay-as-you-go for cloud resources
○ Automatically adjust required capacity in a very fine-grained way → cost reduction
○ Letting cloud providers manage most of your resources has security benefits, plus reduces

engineering mindshare
○ Easy redundancy and availability close to customers → performance improvements

Course Goals

You’ll learn about:

1. What resources are made available by cloud providers that help in deploying
applications

2. Architecting a cloud deployment by selecting resources for optimal scaling
(performance) and cost efficiency

3. Systematically deploying cloud resources using Infrastructure as Code (IaC)

4. Ensuring your deployment remains secure, observable, and continuously
updated

Building Blocks of Cloud Infrastructure

Types of Cloud Product Offerings

Infrastructure as a Service (IaaS)
(CS40 focus)

Platform as a Service (PaaS)

Lowest level of abstraction
is directly above hardware

(e.g., networks, storage, servers)

Abstraction: all hosting
infrastructure managed for you

Just bring the code!

What services do cloud providers offer?

Cloud Concepts in CS40

● Building blocks
○ Compute (EC2, ECS)
○ Network (VPC, ACM)
○ Storage (S3, databases)

● Structuring cloud deployments
○ Infrastructure-as-Code (CDK)
○ Continuous Integration and Continuous Deployment (GitHub Actions)
○ Auditing, Security, and Observability (CloudWatch, CloudTrail, Datadog)

● Applications of cloud computing
○ Serverless compute (Lambda)
○ AI/ML pipelines (GPUs on EC2, Sagemaker)

● Definition: a container is a portable software package
containing all resources needed to run it, providing:

○ Isolation: processes of container A don’t interfere with those of
container B

○ Replicability: same process from same container image should
execute the same on any host machine/OS/configuration

● A container behaves like its own isolated machine, but shares its
kernel with the host machine
○ Cannot run directly on hardware: needs to run on a real OS
○ Manage the OS yourself, or cloud providers can abstract the OS layer

for you, e.g. AWS Elastic Container Service, Google Cloud Run

Containers

Demo: Containers

● Definition: a virtual machine is a computer system created using software on
one physical computer in order to emulate the functionality of another
separate physical computer.
○ Virtual machines cannot interfere with the host or other virtual machines
○ Run their own kernel
○ Managed by a hypervisor

● Primary service offered by cloud providers:
○ AWS Elastic Compute Cloud (EC2)
○ Google Compute Engine
○ Azure VMs

Virtual Machines

Demo: Virtual Machines

Storage

● Object storage
○ Store arbitrary blobs: great for media, but also process inputs/outputs, logs, etc.
○ e.g. AWS S3, GCP Cloud Storage Buckets, Azure Blob Storage

● Block storage
○ Only get the base storage device, with no file abstraction
○ e.g. AWS EBS, GCP Persistent Disk, Azure Disk Storage

● Databases
○ Traditional SQL DBs, plus newer NoSQL DBs (e.g. document, KV, graph models)
○ AWS RDS/Aurora, AWS Neptune, GCP Database, Azure SQL Database, Azure Cosmos
○ Vector DBs, ChromaDB, Pinecone (PaaS)

Network

● Virtual Private Cloud (VPC): a logically isolated virtual network with controls
for resource placement, connectivity, and security

● A VPC is located in one geographical region, but can span multiple
availability zones (datacenters) in that region for redundancy and scalability

● We’ll talk more about cloud networking in the next couple of lectures

Course Logistics

Course Structure

● Lectures: Mon, Wed 4:30pm-5:50pm, 530-127
○ Lecture attendance optional but encouraged; must attend guest speakers’ lectures
○ Recordings are best-effort and only available in extenuating circumstances

● Four Assignments: hands-on, deployments to AWS

● Final project
○ More details to come

Grading

60%: Assignments (15% each)

40%: Final project

Guest Speaker Attendance is Mandatory

Don’t stress about this! Assignments are intended to be straightforward, and
we’ll release autograders so you can check your assignment score as you work

Assignments (60%)

● Four assignments (15% each)
○ A1: Hello World, AWS account setup, CLI refresh, EC2/Nginx static webpage deployment (1/23)
○ A2: Intro to Infrastructure-as-Code; deploy a complex webapp to AWS (2/13)
○ A3: Lambdas, Observability, and AI/ML pipelines (2/27)
○ A4: Continuous Integration & Continuous Deployment (3/7)

● Mostly in Python, but significant shell usage + configuration files (JSON, YAML)

● Can work in pairs for assignments 2-4

● Credits provided for all students after add/drop deadline, look out for
communication on Ed on how to access

Final Project (40%)

● Open-ended (with suggested ideas you’re free to use)
○ Deploy an application of your choosing to AWS!

● Due 3/17, can be completed in pairs

● More details to come

Participation

Required attendance at the following guest lectures:

● Benjamin Bercovitz (Co-Founder of Verkada), Wed 1/24
● Corey Quinn (Chief Cloud Economist, Duckbill Group), Wed 3/6
● Mark Russinovich (CTO of Microsoft Azure), TBD
● Bill Jia (Google Cloud, fmr VP of Engineering @ Meta), TBD

Every unexcused absence will drop you a letter grade. Absences must be
excused before lecture or have extenuating circumstances.

A few quick policy notes

● You MUST follow the letter and spirit of the Honor Code
○ Please reach out if you have any questions about our Honor Code policy

● You can use ChatGPT and other LLM’s for reference, preferably as a last resort
○ Don’t ask for entire assignment solutions
○ We use modern (2024) best practice constructs which may not be in LLM training data
○ Detail LLM usage in your assignment writeups

● If you find bugs in course infrastructure, please tell us!
○ At our discretion, we might give you some extra credit
○ But you still need to complete the assignments as specified

Course Resources

● Course website: https://cs40.stanford.edu
● Ed discussion: https://edstem.org/us/courses/50007/discussion/

○ This is where all course communication will be handled
● Gradescope: 4GYR7J
● GitHub:

○ Public resources: https://github.com/infracourse
○ Assignments 2-4 will be on a GitHub classroom within https://github.com/cs40-24win

● Office hours:
○ Aditya: Mon, Wed 10:00am-11:00am
○ Cody: Wed, Fri 12:00pm-1:00pm
○ Ben: Tue, Thu 1:00pm-2:00pm
○ Starting next Tuesday 1/16

https://cs40.stanford.edu
https://edstem.org/us/courses/50007/discussion/
https://github.com/infracourse
https://github.com/cs40-24win

