
CS 40 | January 10, 2024

Networking Crash Course



Agenda

1. Brief TCP/IP Overview
2. IP Addresses and Routing
3. Networks, Subnetworks, LAN vs WAN
4. NAT
5. Firewalls
6. DNS
7. TLS



The internet

You Website

Understanding the pieces of how this works:



Brief TCP/IP Overview





Physical network 
details (ignore in 
cloud)



Depends on 
your product



This is our 
focus



IP Addresses and Routing



IP addresses

192.168.171.222

10.34.182.62

127.0.0.1 (localhost)

26.29.163.96

6923:0db8:85a3:0000:0000:8a2e:0370:7334

fe80::0202:b3ff:fe1e:8329

2001:dead:beef:cafe::0001

::1 (loopback address)

IPv4 IPv6

Every routable host has one or more IP addresses



Ports

● Every host has 65536 ports

● An application (ie, nginx) can listen on a port 

● Important ports: 22 (SSH) 53 (DNS) 80 (HTTP) 443 (HTTPS)

 

● Specify both an IP and port when connecting to a host
○ ie, 192.168.0.1:53, 34.62.95.226:443, etc



TCP and UDP

● Different ways to send a packet between destinations
● TCP

○ 100% reliable, as long as the connection continues to exist 
○ less bandwidth
○ higher latency
○ Used for most protocols historically

● UDP
○ packet isn't guaranteed to reach destination (but networks are usually reliable these days)
○ higher bandwidth
○ lower latency
○ DNS, modern HTTP versions





Routing

● Motivating Issue: How to get from one host to another, potentially over 
different networks across the group

● Define routes: paths to various destinations
○ default route: where to send a packet that doesn't match any other route
○ for most hosts, there are is only two routes, one route to localhost and the default route to 

the router

● Routers forward packets to the next router until it reaches the destination
○ General path: your network → your ISP → their ISP → their network



Example Path to Destination



Example Path to Destination

Stanford internal network 
and ISP

Google's ISP

Google



Demo: Routing





Subnets

● Definition: A subnet is a range of IP addresses behind a router
○ Hosts can communicate with each other through an internal router

● Subnets help efficiently manage groups of hosts
○ Network level firewalls
○ Unified DNS
○ Manage IP address assignments



172.16.0.0/12

Subnet Notation
Prefix length

Prefix



Special Subnets

● 127.0.0.1: localhost
● Three internal subnets

○ 10.0.0.0/8
○ 192.168.0.0/16
○ 172.16.0.0/12



Aside: IPv4 shortage

● 232 = ~4 billion possible IP addresses

● Large chunks already owned by ISPs and other corporations, or reserved

● Implication: scarce resource → you have to pay for static IPv4 addresses
○ Elastic IP is AWS's method of doing this

● Solution: IPv6, except it's a disaster
○ for CS40 purposes, we're only going to talk about IPv4



NAT



Demo: NAT



NAT

● Core Idea: Abstract away the details of the internal network
○ Fewer IPv4 addresses used
○ Security
○ Flexibility

● Replace the source IP of every packet with the IP of the router
○ Every host behind the router shares the same public IP
○ Endpoint can't determine which host on a network made what request (without other 

information)



Firewalls



Firewalls

● Firewalls can regulate network access to:
○ IPs
○ Subnets
○ Ports

● Two directions: inbound and outbound
○ Generally, inbound rules are very strict, but more difficult to write strict outbound rules
○ Applications usually need a way of updating themselves, or communicating with external 

resources

 

● Two modes of operation: default allow or default deny



Two types of firewalls

Network level

● Protects the entire subnet
● Often implemented in the router
● AWS term: VPC ACL (next lecture)

Host level

● Protects a single host
● Depending on implementation, can be 

disabled by an administrator on the host
● AWS term: Security Group



Demo: Firewalls



Why two layers of firewalls?

● Defense in depth: multiple overlapping layers of security are better than one
○ "Swiss Cheese Model"
○ One layer of compromise should not be sufficient to defeat security

● Principle of least privilege: only give {machines, people, everything} access 
to what they need to function
○ prevents accidental errors as well as improves security



DNS





D(omain) N(ame) S(ystem)

● Motivating issue:
○ IP protocol and routing works using IP addresses
○ Humans don't work using IP addresses

● Solution: Provide a way to resolve human readable names (ie, google.com) 
to an IP address
○ Abstracts away more hosting details
○ Flexibility
○ In practice: query a DNS server to resolve a domain name to an IP, then connect to the IP



DNS Architecture

● Hierarchical tree of DNS servers
○ Root DNS servers maintained by ICANN

● Router (usually) hosts a local DNS server, provides internal network DNS

● Router specifies an authoritative DNS server for machines outside of the 
domain
○ Performs a reverse DNS lookup for all queries it cannot resolve internally



Example DNS Query Path
You

Domain Controller

Local Network DNS

ISP DNS

Google DNS



Important DNS Servers

● Cloudflare: 1.1.1.1

● Google: 8.8.8.8, 8.8.4.4

● Others: 9.9.9.9, various ISP DNS servers
○ e.g. Stanford: 171.67.64.53, 171.64.69.53



DNS Record Types

● A (alias): simplest record type, maps domain name to IPv4 address
○ e.g. a1.codyho.infracourse.cloud → 34.212.146.53
○ AAAA: Same thing for IPv6 domains

● CNAME (canonical name): used to create aliases, mapping domain names to 
domain names
○ e.g. provisiondns.infracourse.cloud → infracourse-dns-provisioner.pages.dev

● NS (nameserver): used to designate an authoritative nameserver
○ Output: another DNS server to query the domain name against
○ e.g. codyho.infracourse.cloud → ns-1573.awsdns-04.co.uk



https://toolbox.googleapps.com/apps/dig

https://toolbox.googleapps.com/apps/dig


DNS Replication

● DNS servers communicate with each other to continuously update their 
records
○ e.g. when someone buys a new domain name

 

● Replication introduces synchronization issues in DNS
○ Records take time to propagate
○ Different DNS servers may have outdated entries





Aside: DNS Implications

● Privacy: Without additional protections, anyone on the network path 
between you and the DNS server can see all the websites you visit
○ e.g. ISPs often mine this data (or even host their own DNS) to sell, often for ad targeting
○ Solution: DNS over HTTPS: encrypted DNS queries and responses

 

● Censorship: A small number of DNS providers can effectively blacklist a 
website



Transport Layer Security (TLS)





TLS Threat Model

You bank.comRouter 1 Router 2 Router 3

EVIL



Solution: Asymmetric Cryptography

● Idea: Server sends you a public key that can only be used to encrypt data, such that 
only the corresponding private key can decrypt the data
○ Because the public key can’t decrypt the data, an attacker has no way of viewing the plaintext data

● This helps create a secure channel that can be used to communicate
○ Server public and private key used to agree on a shared key used to encrypt all traffic

● Issue: How do you verify the public key is legitimately owned by the website you are 
trying to connect to?
○ Solution: have some way of choosing which keys to trust

■ Designate a number of trusted providers (certificate authorities) which can verify other keys
■ Only accept a key if someone you already trust has verified it's legitimate



T(ransport) L(ayer) S(ecurity)

● Idea: have a hierarchical tree structure of trusted providers
○ The root of this tree is stored on your hard drive and is controlled by your OS and browser
○ Any certificate with a chain of trust ending at one of these certificates is trusted
○ Certificates are given out by certificate authorities

● Based on X.509 certificates, contain:
○ Public key
○ Signature

■ from a trusted CA, not self signed
○ Domain name(s) the certificate is valid for
○ Time a certificate is valid
○ Cryptographic information



https://letsencrypt.org/certs/isrgrootx1.txt

https://letsencrypt.org/certs/isrgrootx1.txt


What happens when you navigate to google.com?

1. Resolve the domain name google.com
2. Connect to google.com, first through a NAT, then a network of public 

routers
3. Receive a certificate from google.com
4. Verify the certificate from google.com
5. Establish the connection



Further exploration

● CS 144 Introduction to Computer Networking
● CS 155 Computer and Network Security
● CS 255 Introduction to Cryptography
● CS 249I The Modern Internet
● CS 349D Cloud Computing Technology

○ Taught by our faculty sponsor Prof. Kozyrakis


