
CS 40 | January 22, 2024

Storage on the Cloud

Types of Cloud Storage

Object storage

● Store arbitrary data objects

● Many general uses:
○ Media / user-generated content
○ Log files
○ Intermediate pipeline outputs

● Each storage container is called a
bucket

Properties of Object Storage

● Unlike a filesystem, objects aren’t stored hierarchically (no directories)
○ Instead: lookup an object using bucket name and key

● Designed for high scale and high reliability
○ No limits on the size of the objects that can be stored
○ AWS S3 features 99.999999999% (11 9s) data durability due to redundant architecture

● Harder to do better than S3 for general data storage!

Demo: S3 bucket

Data Archival

● Cheaply retain infrequently accessed data for a long time
○ Why? Backups, regulatory/compliance requirements, support some niche customer needs

● Tradeoff between cost, data access latency, and availability
○ S3 has multiple intermediary archive storage tiers

● Example solutions:
○ AWS S3 Glacier
○ Archive tier for Google Cloud Storage
○ Azure Archive Storage

Axes of Object Storage Costs

● Data volume: $0.001-$0.025/GB/mo, depending on access frequency
○ To store 1TB of data: $1-$25/mo

● Requests:
○ Writes: $0.005-$0.05 per 1000 requests (more for archive tiers)
○ Reads: $0.0004-$0.01 per 1000 requests (more for archive tiers)

● Data egress to the internet: $0.05-$0.09/GB
○ $90 to serve 1TB of content

S3 Cost Table

Tier Cost per GB Cost per 1000 Reads Cost per 1000 Writes

S3 Standard $0.023 $0.0004 $0.005

S3 Standard (Infrequent) $0.0125 $0.001 $0.01

S3 Glacier (Instant) $0.004 $0.01 $0.02

S3 Glacier (Flexible) $0.0036 $0.0004 $0.03

S3 Glacier (Deep Archive) $0.00099 $0.0004 $0.05

Reducing Storage Costs

● Easy optimization: S3 Intelligent Tiering
○ Automatically chooses the lowest-cost storage tier dynamically based on stored data volume

and request frequency

● Reducing data egress fees requires more care
○ Consider how much data actually needs to be served to the internet (data transfer within

AWS – especially within a region – is cheaper)
○ For content that needs to be served: cache it with a CDN (e.g. Cloudfront)

Block and file storage

● Minimal abstraction: a storage device or a file system
● Used to back compute instances and for file shares
● Often used as a migratory step from on-premise infra

Databases

● Quick insertion / retrieval of specific pieces of structured data using queries
○ Allows easy access to only the data momentarily relevant for an application
○ e.g. retrieve the most recent comments for a given user

● Many types of databases are available
○ Traditional SQL databases, e.g. MySQL, Postgres via AWS RDS, Azure SQL DB, GCP SQL
○ NoSQL databases

■ Document model: AWS DocumentDB, Google Firestore, Azure Cosmos
■ Key-value store: AWS DynamoDB, Google BigTable, Azure Cosmos
■ Graph database: AWS Neptune

● More detail in Wednesday’s guest lecture (Benjamin Bercovitz)

Relational Databases

● Data for an application is stored in
a database running on a database
server/cluster in tables with defined
schemas
○ Relationships between tables through

foreign keys: unique keys that map to
unique keys of other tables

● Constraints on structure and data
types help with efficient access
and data integrity
○ Caution: also makes changing the data

model hard! Consider data model
carefully when starting to build

Relational Databases

Query via SQL

e.g. “find the first and last name of
customers who bought product 1”

SELECT firstName, lastName
FROM customers
JOIN orders
ON customers.customerID =
orders.customerID
WHERE productID = 1;

Object-Relational Mappers

● Interface with relational databases at application language level of
abstraction
○ e.g. SQLAlchemy (Python), Active Record (Ruby on Rails), Sequelize (Typescript)

Session.query(Customers, Orders)

 .filter(Customers.CustomerID == Orders.CustomerID)

 .filter(Orders.ProductID == 1)

● Advantages: composability, maintainability, more defense against SQL
injection attacks

Demo: PostgreSQL database

Key-Value Stores

● Single primary key (like a hash table), but value schema isn’t enforced
○ Making sure value schema stays consistent can be challenging

● Offers very fast lookup of values from keys, but hard to do aggregate
operations across rows

Caches & In-Memory Databases

● For data that doesn’t need to persist indefinitely, but needs to be quickly
accessed
○ Store frequently accessed or computed data in memory: reduces application latency
○ Common use cases: session management, user feeds (if infrequently changed)

● Typically uses key-value architecture

● Common open-source software: Memcached and Redis
○ Offered as managed services by cloud providers, e.g. AWS ElastiCache

Document-Model Databases

● Store documents (JSON objects) in
collections at a specified path
○ Schema not enforced and can change

easily over time – blessing and curse

● Well-known options: MongoDB,
AWS DocumentDB, Google
Firestore

Hosted Databases as “Backend-as-a-Service”

● Motivation: Avoid writing a full
backend by exposing database
functionality as public APIs

○ Avoids having to write new REST API
endpoints for each bit of functionality

○ Makes creating some sorts of apps
easier: just focus on the frontend logic

Pitfalls of BaaS

● Any client (incl. malicious ones) can access database
○ Database must gate access to sensitive data
○ Yet, less granularity in access control vs. writing regular backend code
○ Poor validation (e.g. misconfigured rules) → unauthorized data access

● Application logic becomes irrevocably tied to specific BaaS platform
○ Cost and performance at the whim of the BaaS provider; migration becomes difficult

Our recommendation: use hosted technologies with well-defined open protocols
e.g. AWS Aurora can be swapped out to any other hosted Postgres offering

Storage in the Real World

Common Web Service Architecture

Instagram’s initial architecture (2011) – Assignment 2 (Yoctogram) is a modernized version

Data Warehouse

● Aggregate data from many diverse
sources into a central database
○ Eager processing:

Extract-Transform-Load (ETL) integrates
incoming data into a consistent format

● Enables efficient analytics queries
for business and product insights

Data Lake

● Aggregate data from many diverse
sources, but without a consistent
schema at storage time
○ Storage using S3, Hadoop Filesystem

(HDFS) – self-managed – or dedicated
providers: Azure Data Lake, Google
BigLake

● Allows flexibility to figure out what
business questions need to be
asked of the data later

Criticisms of Data Lakes

● Lack of structure makes it easy to
lose track of what data is stored
○ “Data Swamp”, “Data Graveyard”

● Also creates inefficiencies in
querying for relevant data

A hybrid approach: Data Lakehouse

Assignment 2 Out Soon (Due 2/13)

AWS Credits to be Distributed on Friday

Next Lecture: Database Design and Tradeoffs (1/24)
GUEST LECTURE by Benjamin Bercovitz (Verkada)

Mandatory (graded) attendance

