Storage on the Cloud

CS 40 | January 22, 2024

Types of Cloud Storage

Object storage

e Store arbitrary data objects

~»

Google Cloud Storage
e Many general uses: g g

o Media/ user-generated content
o Logfiles
o Intermediate pipeline outputs

Microsoft Azure
Blob Storage 01

e Each storage containeris called a
bucket

Properties of Object Storage

e Unlike a filesystem, objects aren’t stored hierarchically (no directories)
o Instead: lookup an object using bucket name and key

e Designed for high scale and high reliability
o No limits on the size of the objects that can be stored
o AWS S3 features 99.999999999% (11 9s) data durability due to redundant architecture

e Harderto do better than S3 for general data storage!

Demo: S3 bucket

Data Archival

e Cheaply retain infrequently accessed data for a long time
o Why? Backups, regulatory/compliance requirements, support some niche customer needs

e Tradeoff between cost, data access latency, and availability
oS3 has multiple intermediary archive storage tiers

e Example solutions:
o AWS S3 Glacier
o Archive tier for Google Cloud Storage
o Azure Archive Storage

Axes of Object Storage Costs

e Datavolume: $0.001-$0.025/GB/mo, depending on access frequency
o Tostore 1TB of data: $1-$25/mo

e Requests:
o Writes: $0.005-$0.05 per 1000 requests (more for archive tiers)
o Reads: $0.0004-$0.01 per 1000 requests (more for archive tiers)

e Data egress to the internet: $0.05-$0.09/GB

o $90to serve 1TB of content

S3 Cost Table

Tier

S3 Standard

S3 Standard (Infrequent)
S3 Glacier (Instant)

S3 Glacier (Flexible)

S3 Glacier (Deep Archive)

Cost per GB
$0.023
$0.0125
$0.004
$0.0036

$0.00099

Cost per 1000 Reads
$0.0004

$0.001

$0.01

$0.0004

$0.0004

Cost per 1000 Writes
$0.005

$0.01

$0.02

$0.03

$0.05

Reducing Storage Costs

e FEasy optimization: S3 Intelligent Tiering

o Automatically chooses the lowest-cost storage tier dynamically based on stored data volume
and request frequency

e Reducing data egress fees requires more care
o Consider how much data actually needs to be served to the internet (data transfer within
AWS — especially within a region — is cheaper)
o For content that needs to be served: cache it with a CDN (e.g. Cloudfront)

Block and file storage

e Minimal abstraction: a storage device or a file system
e Used to back compute instances and for file shares
e Often used as a migratory step from on-premise infra

Databases

e Quick insertion / retrieval of specific pieces of structured data using queries

o Allows easy access to only the data momentarily relevant for an application
o e.g.retrieve the most recent comments for a given user

e Many types of databases are available
o Traditional SQL databases, e.g. MySQL, Postgres via AWS RDS, Azure SQL DB, GCP SQL
o NoSQL databases
m Document model: AWS DocumentDB, Google Firestore, Azure Cosmos
m Key-value store: AWS DynamoDB, Google BigTable, Azure Cosmos
m Graph database: AWS Neptune

e More detail in Wednesday’s guest lecture (Benjamin Bercovitz)

Relational Databases

e Data for an application is stored in
a database running on a database
firetNane - category server/cluster in tables with defined

lastName String price schemas

it 2ats o Relationships between tables through
FnsvaRent e foreign keys: unique keys that map to
unique keys of other tables

Customers Products

customerID Int productID

anniversary Date

orderID
Employees customerID

e Constraints on structure and data

employeeID Int employeeID

firstName | String productID types help with efficient access

lastName String orderTotal

birthDate Date orderDate

and data integrity
o Caution: also makes changing the data
model hard! Consider data model
carefully when starting to build

Relational Databases

Query via SQL

Customers Products

custoerID | Int productID e.g. “find the first and last name of
firstName String category 9
customers who bought product 1

lastName String price

birthDate Date

moneySpent Money SELECT fiIStName, laStName
anniversary Date FROM Cus‘tomers
- orderID JOIN orders
mployees tomerID
e ON customers.customerID =
firetName o s orders.customerID
lastName String orderTotal WHERE productID = 1;

birthDate Date orderDate

employeeID Int employeeID

Object-Relational Mappers

e Interface with relational databases at application language level of

abstraction
o e.g. SQLAlchemy (Python), Active Record (Ruby on Rails), Sequelize (Typescript)

Session.query(Customers, Orders)
.filter(Customers.CustomerID == Orders.CustomerID)

.filter(Orders.ProductID == 1)

e Advantages: composability, maintainability, more defense against SQL
Injection attacks

Demo: PostgreSQL database

Key-Value Stores

Phone directory MAC table
Key Value Key Value
Paul (091) 9786453778 10.94.214.172 3c:22:fb:86:c1:b1
Greg (091) 9686154559 10.94.214.173 00:0a:95:9d:68:16
Marco (091) 9868564334 10.94.214.174 3c:1b:fb:45:c4:b1

e Single primary key (like a hash table), but value schema isn’t enforced
o Making sure value schema stays consistent can be challenging

e Offers very fast lookup of values from keys, but hard to do aggregate
operations across rows

Caches & In-Memory Databases

e For datathat doesn’t need to persist indefinitely, but needs to be quickly

accessed

o Store frequently accessed or computed data in memory: reduces application latency
o Common use cases: session management, user feeds (if infrequently changed)

e Typically uses key-value architecture

e Common open-source software: Memcached and Redis
o Offered as managed services by cloud providers, e.g. AWS ElastiCache

Document-Model Databases

e Store documents (JSON objects) in
collections at a specified path

{
o Schema not enforced and can change " qd": "5cf0029caff5056591b0ce7d"
. . . "firstname": "Jane",
easily over time — blessing and curse s agthsmers "WI®,

"address'": {

"street": "1 Circle Rd",
"city": "Los Angeles",
"state": "CA",

"zip": "90404"

e Well-known options: MongoDB, }

"hobbies": ["surfing", "coding"]

AWS DocumentDB, Google)
Firestore

Hosted Databases as “Backend-as-a-Service”

e Motivation: Avoid writing a full
backend by exposing database
functionality as public APIs

o Avoids having to write new REST API
endpoints for each bit of functionality

o Makes creating some sorts of apps
easier: just focus on the frontend logic

& Firebase

4y supabase

Pitfalls of BaaS

e Any client (incl. malicious ones) can access database

o Database must gate access to sensitive data
o Yet, less granularity in access control vs. writing regular backend code
o Poor validation (e.g. misconfigured rules) = unauthorized data access

e Application logic becomes irrevocably tied to specific BaaS platform
o Cost and performance at the whim of the BaaS provider; migration becomes difficult

Our recommendation: use hosted technologies with well-defined open protocols
e.g. AWS Aurora can be swapped out to any other hosted Postgres offering

Storage in the Real World

Common Web Service Architecture

Key-value store:
photo ID - user ID

(\
A | Redis |
“ /L_)
{ /_ﬁﬁ—_____—w User data,
*%L Application -—E%*L‘jfffffff:_/ photo metadata,
AN

request

etc
balancer |- Server

Frontend Stack: |
- Objective-C
- UIKit (?)

(Django/Python)

Cache common

Memcached respzqses,
[] calls
~ !

etc.

App downloads pictures
from S3 using CloudFront links
< CloudFront CDN

g y T/ Photo Link

———

| Photo storage (s3) J
Uploads from the client — [°
go straight to S3

(application server presumably performs auth +
metadata storage though)

Instagram’s initial architecture (2011) — Assignment 2 (Yoctogram) is a modernized version

Data Warehouse

] Data Staging Warehouse Data Users
e Aggregate data from many diverse sources rea Marts

sources into a central database T - —r

o Eager processing: OP:;;:‘;:E' § Purchasing Analysis
Extract-Transform-Load (ETL) integrates — — ' Jeta?»Tak

incoming data into a consistent format L_J : liﬁmmm' Raw data e W&

Op:e;sattmal data _ Sales X Reporting

e Enables efficient analytics queries = L]\ Iy

for business and product insights Inventory e

X

— amazon) Google
o< snowflake

Data Lake

e Aggregate data from many diverse
sources, but without a consistent

schema at storage time

o Storage using S3, Hadoop Filesystem
(HDFS) - self-managed — or dedicated
providers: Azure Data Lake, Google
BiglLake

e Allows flexibility to figure out what
business questions need to be
asked of the data later

Relational
databases

Non-
relational
databases

Big-data
processing

Machine
learning

Log
analytics

Data
warehousing

Criticisms of Data Lakes

e Lack of structure makes it easy to

lose track of what data is stored
| @ o “Data Swamp”, “Data Graveyard”

vz:\9

e Also creates inefficiencies in
=) querying for relevant data

:) RE / 0 g
JITH CSV FILES }
-

A hybrid approach: Data Lakehouse

Consumption @ H M @

Layer Machine

Interactive Business |
learning

Queries intelligence

Processing @0

Layer z
SQL based ELT Big data Near Real-time ETL
processing

Catalog Shared Catalog

—

Layer

Native Integration
Storage '
l ﬁ

Data warehouse Data lake

Structured Unstructured, Semi-structured, Structured

Ingestion
Layer Batch Streaming

Data =y B 8 B o B =

Sources S
SaaS Applications OLTP ERP CRM LOB File shares Devices Web Sensors Social

Batch Streaming

Assignment 2 Out Soon (Due 2/13)

AWS Credits to be Distributed on Friday

Next Lecture: Database Design and Tradeoffs (1/24)
GUEST LECTURE by Benjamin Bercovitz (Verkada)
Mandatory (graded) attendance

