
CS 40 | January 29, 2024

Containerization and
Container Orchestration

Assignment 2 Out (Due 2/13)

AWS Credits Released (see Ed)

History of Web Hosting
(and enterprise compute)

Early 1990s: Physical Hosting

● Each individual physical server
hosted one website on port 80

● Scale challenge: Adding capacity
to accommodate traffic influx is
subject to hardware lead time

● Provisioning challenge: Even if
hardware available, still need to
reinstall server software manually!

Late 1990s – Mid 2010s: Virtual Hosting

● Key innovation (1999): virtual machine hypervisors allow running of multiple
guest OSes on a single physical host
○ Emulate the entire guest OS, both kernel and userspace

● Addresses many inefficiencies with physical hosting:
○ Can buy fewer, high-capacity servers, dividing capacity across VMs for different websites
○ Provisioning is faster: just create new VMs from stored images (or script provisioning)

● Enables cloud IaaS: someone else buys the physical servers and rents you
the VM abstraction

Challenges of Physical Hosting

● Continued scale challenges:
○ VM provisioning can be multiple minutes → under capacity while dealing with traffic influxes
○ VM images can be several GB → storage cost

● Management overhead: still responsible for patching OS and software
○ Need for DevOps/Infrastructure Engineers to handle this responsibility

Guiding principle: Make running web (or other) applications as
independent as possible from the underlying infrastructure.

Containers

● Definition: a container is a portable software package
containing all resources needed to run it, providing:

○ Isolation: processes of container A don’t interfere with those of
container B

○ Replicability: same process from same container image should
execute the same on any host machine/OS/configuration

● Introduced in its current form in 2013 by Docker

○ Alternatives include Podman and LXD, but Docker is by far the
most commonly used platform

Containers

More about containers

● A container behaves somewhat like its own
isolated OS, but shares its kernel with the
host OS
○ Key distinction compared to virtual machines

● Usually run on Linux hosts, deeply reliant on
Linux kernel features
○ Cgroups (for process isolation and resource limiting)
○ iptables (for networking)
○ OverlayFS (layered, contained filesystems)

Building a Docker Container

Dockerfile

Inherit from parent container definition
FROM python:3.12-slim
Run all future commands in /app directory
WORKDIR /app
RUN echo “Hello World!” > index.html
Make port 8080 accessible from host
EXPOSE 8080
Run a simple HTTP server
Use ENTRYPOINT to avoid overwriting parent setup steps
CMD [“python3”, “-u”, “-m”, “http.server”, “8080”]

Demo: Interacting with a Web Container

Container Networking

● By default: Docker containers are given own isolated network interface

● NAT behind host machine allows outbound network access, but need to
explicitly expose ports for inbound

● Containers cannot talk to each other unless they are attached to the same
software-defined network
○ Alternatively: use host networking mode to remove NAT abstraction (i.e., process that listens

on a container port is accessible at the host scope too)

Container Storage

● Anything saved within the filesystem of a running container is ephemeral
○ Destroyed after the invocation ends

● Storage persistence through volumes: directories on the host system
mapped to directories within the container

docker run --rm -v ~/postgres:/var/lib/postgresql/data -p 5432:5432 postgres:latest

● Volumes are also how we can share host data with the container!
docker run --rm -v ~/.aws:/root/.aws:ro my-aws-dependent-service:latest

Container Storage on the Cloud

● In practice: we want to separate compute and storage concerns
○ Treat your compute like cattle, not pets

● Generally, store long-term persistent data elsewhere
○ Databases
○ Object storage (e.g., S3)

Container Registries

● Use pre-made container definitions as is, or extend them
○ Analogy: package management for containers
○ Inheriting from a parent container in a Dockerfile appends your Dockerfile to the parent’s

● Public registries: DockerHub, Quay.io
○ Freely download and host public images, many base images e.g. Go, Python, Nginx, Postgres

● Private registries: AWS Elastic Container Registry, Google Artifact Registry
○ Often used for organization-internal images, since download requires authentication

● Pulling containers: through Fully-Qualified Image Identification (FQID)
○ Format components include: registry_name, username, image_name:tag
○ e.g. docker pull docker.io/library/ubuntu:22.04
○ e.g. FROM 123456789012.dkr.ecr.us-west-2.amazonaws.com/mywebapp:latest

How to Containerize a Web Application

1. Pick a base image that simplifies some work for you
○ e.g. something with a language package manager/common dependencies installed

2. Copy app files

3. Install dependencies

4. Expose inbound port

5. Run application

Note: multistage builds can reduce final container size when working with
compiled languages (e.g. Go, Rust)

Demo: Multistage Go Webapp Container Build

Container Orchestration

Motivation

● Containers, on their own, help us deal with software challenges of running
web apps: dependencies and isolation

● But infrastructure challenges still persist: scale, provisioning, storage, …

● Container Orchestration: tooling that automates provisioning, scheduling,
scaling, resource allocation, monitoring, and networking configuration across
container task lifecycles.

Basic container orchestration: docker-compose

● Container orchestration for development environments
○ Run an application and all its dependencies together in an

isolated networked environment

● Limitation: can only run containers on a single host
○ Hampers scaling and redundancy

Demo: docker-compose

Kubernetes

● Conceptually: Kubernetes is an operating system for
distributed container clusters
○ Each process is a container
○ Kubernetes takes care of scheduling the container and managing its

lifecycle given some configuration parameters

● Kubernetes features are oriented towards building scalably
deployable and portable application patterns
○ Container scheduling, autoscaling, versioning, health checks
○ Networking, DNS service discovery, load balancing, ACLs, MTLS
○ Secrets and config management, observability
○ Further extensible using third party plugins!

Kubernetes Terminology

● Cluster: a set of nodes (hosts) that run containers
○ Made up of a single control plane and multiple worker nodes

● Namespace: an isolated group of resources within a cluster

● Pod: a group of one or more containers used for a single purpose
○ Share a network namespace, just like docker-compose

● Deployment: a way of maintaining a set of pods for scaling and redundancy
○ Ensures that the right number of pods are always running regardless of failures

● Service: a way to expose pods/deployments for external network access
○ Assigns a pod/deployment a virtual IP and/or DNS address

Example Architecture with Kubernetes

Demo: Kubernetes

Q: Kubernetes has a lot of features! Why don’t we just use the
open-source framework instead of closed-source cloud
provider-managed solutions?

A: Management overhead.

AWS Elastic Container Service (ECS)

● Fully-featured container orchestration service
○ Proprietary AWS platform
○ Just like Kubernetes: can handle container management across

multiple nodes
○ Some different terminology: tasks vs pods

● A lot simpler to manage than Kubernetes (and EKS)
○ Can simply bring the container(s) and tell AWS how to run it
○ Set and forget

● Some limitations, such as persistent storage and task
count

Takeaway: ECS is a great way to start doing simple container deployments
(e.g. Assignment 2) without dealing with the complexity of Kubernetes

Zooming out: Cloud-Managed Container Orchestration

How much control do you want to retain vs
how much the cloud provider manages for you?

More control
DIY all config and

maintenance

More managed
Bring the container,

everything else done for you

Self-managed k8s on a
fleet of compute instances

AWS EKS on EC2 AWS ECS on EC2
AWS EKS on Fargate

Azure AKS

Google GKE
Azure Container Apps
AWS ECS on Fargate

Next Lecture: Infrastructure-as-Code (1/31)

