Introduction to
Infrastructure-as-Code

CS 40 | January 31, 2024

Agenda

A Brief Historical Overview
Fundamental Principles of IaC
5 Minute Break

Prominent IaC Tools

Bwnh e

History

D& LTechnologies Q 2 signin

APEX ~ IT Infrastructure ~ Computers & Accessories ~ Services ~ Support ~ Deals ~

(y USA > Servers, Storage & Networking > Servers > RackServers > PowerEdge R750xa > PowerEdge R750XA Rack Server
Intel® Xeon® Scalable Processors
Learn More about Intel

PowerEdge R750XA Rack Server

Flagship server for GPU-based workloads

Improved air-cooling and expansion potential. Designed to accelerate performance
AI/ML/D . e, performance graphics, and more.

Learn More

@ i Add to Cart

Features Reviews Drivers, Manuals & Support

OXA Rack Server &3 share :

Estimated Value -
Selections may result in additional updates to the overall configuration, which may impact the price for Support and Total Savings $20,364.00
Services and the total overall price and savings for this product. Shipping Free
Dell Price $30,546.00
® Components Selections may result in additional updates
to the overall configuration, which may
Base PowerEdge R750XA Server Selected jmpack the price o7 SUP port and serwces
and the total overall price and savings for

this product.

€3 Contact Us

@ US/EN ~

VB cart v

opa eval -b autograder/rules/ -i <(jq -s 'reduce .[] as Sitem ({}; .Resources += Sitem.Resources) |
del(.Resources.CDKMetadata)' cdk/cdk.out/yoctogram-network-stack.template.json
cdk/cdk.out/yoctogram-data-stack.template.json cdk/cdk.out/yoctogram-compute-stack.template.json)
-f json 'data.rules.main' | jq -r .result[].expressions[].value.violations][]

jg -r ""\(.resources[] | .asn)*\(.site)"' < output.jsonl | sort | uniq | grep -v 'UNKNOWN*' |
grep -v 'null?r' | grep -vf <(jq -r ""\(.asn)*\(.site)"' < output.jsonl) | datamash -t* -g 1 count 2
| sort -k2 -t* -n

local displayflag="$1"
shift
loca

1 songlist_verbose=$($MPC -f "$displayflag" 's@" "SE(.F)\) @ (.*/)2(.*)#\1) @ \3 @ \2\3#' "@ ' '{printf "%s @
F[["$(wc -1 < '$songlist_verbose")" -gt 1

nags we fed 1o al 1 1at

lots S 1gu
local songlist="%(awk -F ' @ 'BEGIN{OFS=" @ ";} {print $1,$2,$3}' $songlist_verbose)”
1

local chosen_song_entry="$(select_from "$songlist” "song (disambiguation)")"
f song empty (e] lecti f
[[-z "$chosen_song_entry”]] && return 1

ot perfect of= t technicall

grep -F "$chosen_song_entry"

Some General Challenges:

e How do I keep track of what my infrastructure looks like?

o A: Anetwork diagram, (outdated) documentation, and a lot of accumulated knowledge that
no one ever bothered to write down

e How canI add more infrastructure?
o Buy more servers, then stick them on a rack and connect them to the internal network

e How can I configure new infrastructure?
o Run agiant magical bash script that you better hope works
o “Saligrama’s Law of Brittleness”: The brittleness of a shell script grows exponentially with its
length

Fundamental Principles of IaC

Goal: Manage infrastructure like you manage code

Code

e \Written in a programming language

e Managed using version control (Git)
o Keep track of changes

e Runon underlying hardware

Infrastructure as Code

e \Written in a programming language
o Terraform, CDK, etc

e Managed using version control (Git)

e Run on underlying hardware

o Some infrastructure provider aWS

Declarative vs Imperative Paradigm

e Declarative: declare the end state of infrastructure, don't specify steps to
get there

e Imperative: write a series of steps on how to get to the end state

e (Q: Should IaC be declarative or imperative?
o A: Declarative — makes infrastructure simpler and easier to understand, avoids complexity
o Use imperative methods only if your infrastructure is very complex and you need imperative
features

State Management

e State: the resources that are currently deployed and their status

e IaC needs to manage state

o Understand the difference between where your infrastructure currently is and where you
want it to be
o Also has the power to clean everything up if needed

e Workflow: Plan, then apply

o Always check what changes your IaC is going to make!

Idempotency

e Idempotency: a property indicating that running the same deployment twice

(or more times) has the effect as running it once
o Concept from math: f(x) = f(f(x))

e Why is this a good thing?
o Safety: prevent unnecessary resources from being deployed (saves money)
o Simplicity: don't have to worry about current state of infrastructure if you run a deployment

5 Minute Break

Prominent IaC Tools

DANGER: Do not modify any resources
created with IaC manually

Possible IaC Pipeline

1. Provision image
o Packer,docker build

2. Deploy image
o Terraform, AWS CDK, Pulumi, etc.

3. Runtime provisioning
o cloud-init

4. Runtime management
o Ansible, etc.

Packer

e \Written in HCL or JSON

o Hashicorp Configuration Language, essentially a less
verbose version of JSON

e Two components:
o Builders: spin up a live base image (e.g., an EC2 VM
based on an Ubuntu AMI)
o Provisioners: steps to configure the machine
m Many types: shell, Ansible, file transfer, etc.

e Supports many different platforms

o AWS, GCP, Azure, OpenStack, Proxmox
o Can be extended using different providers

"builders*: [
{
“type": "amazon-ebs",
"region": "us-west-2",
“source_ami": “"ami-@76falac9a95aef2e",
"instance_type": “t4g.small",
“ssh_username": “"ubuntu",
"ami_name": “cs4@-assignment2-ubuntu-22.04-1ts-with-tools-{{timestamp}}"
¥
1,
“provisioners": [

{

" TP T &

I “inline": ["/usr/bin/cloud-init status —-wait"] I

“type: "file",
“"source": "99_user_defaults.cfg",
“destination": "/tmp/99_user_defaults.cfg"

“type": "shell",
“inline": [“sudo mv /tmp/99_user_defaults.cfg /etc/cloud/cloud.cfg.d/99_user_defaults.cfg" 1]

“"type": "shell",
"inline": [
“sudo apt-get update",
“sudo apt-get install -y jq",
“sudo apt-get install -y ca-certificates curl gnupg unzip python3-venv python3-pip uidmap",
“sudo mkdir -p /etc/apt/keyrings",
“curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | sudo gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg",
“echo 'deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main' | sudo tee /etc/apt/sources.list.d/nodesource.list",
“sudo apt-get update && sudo apt-get install -y nodejs",
“sudo npm install -g aws-cdk",
“rm -rf /tmp/aws"

h

Demo: Packer

Terraform

e \Written in HCL or JSON

e Purely declarative

e Contains a provider (AWS, Azure, GCP,
Proxmox, etc) followed by a list of resources

™/ '_;

"ami-0c94855ba9g

"t2.micro"

Terraform Licensing Drama

e Hashicorp develops Terraform (and many other cloud
tools)

HashiCorp

e Terraform licensed as Mozilla Public License v2 until
August 2023

e In August 2023, license changed to Business Source .
License v2 (not open source) without warning

o Widely regarded as a bad move by the IAC/DevOps community

e Open source alternative: OpenTofu
o Replicates the Terraform binary functionality, but not Hashicorp's
cloud services

Cloud Development Kits

e Examples: AWS CDK, CDKTF (Terraform), Pulumi

e Has the power to mix declarative and imperative programming paradigms
o Possible footgun

e Written in a high level language
o Python, Typescript, Go are common

AWS CDK Components

e App: The overall deployment, contains multiple stacks

e Stack: Basic unit of deployment
o Can be deployed independently (assuming no dependencies)
o Can have dependencies on other stacks
o Should encapsulate individual components of deployment
m Networking, compute, storage, etc

e Environment: AWS account and region where the deployment is to take place

props = Props()
env = cdk.Environment(account=settings.CDK_DEFAULT_ACCOUNT, region=settings.REGION)

dns_stack = DnsStack(app, f"{settings.PROJECT_NAME}-dns-stack", env=env)
props.network_hosted_zone = dns_stack.hosted_zone

network_stack = NetworkStack(
app, f"{settings.PROJECT_NAME}-network-stack"”, props, env=env
)
props.network_vpc = network_stack.vpc
props.network_backend_certificate = network_stack.backend_certificate
props.network_frontend_certificate = network_stack.frontend_certificate

data_stack = DataStack(app, f"{settings.PROJECT_NAME}-data-stack", props, env=env)
props.data_aurora_db = data_stack.aurora_db

props.data_s3_public_images = data_stack.s3_public_images
props.data_s3_private_images = data_stack.s3_private_images

props.data_cloudfront_public_images = data_stack.cloudfront_public_images

props.data_cloudfront_private_images = data_stack.cloudfront_private_images
compute_stack = ComputeStack(

app, f"{settings.PROJECT_NAME}-compute-stack"”, props, env=env
data_stack.add_dependency(network_stack)

compute_stack.add_dependency(data_stack)

app.synth()

Provisioning Resources in AWS CDK

e Each stack has a constructor, which creates all required resources for the stack

class DnsStack(Stack):
hosted_zone: r53.IHostedZone

def __init__(self, scope: Construct, construct_id: str, kwargs) — None:
super().__init__(scope, construct_id, **kwargs)

hosted_zone rb53.HostedZone(

’

f"{settings.PROJECT_NAME :
zone_name=settings.SUNET_DNS_ROOT,

e Thecalltor53.HostedZone creates the resource; the assignment to
self.hosted_zone is only to communicate with other stacks

from aws_cdk import (
Stack,
aws_ec2 as ec2,
aws_routeb3 as rb3

)
class ExampleStack(Stack):
def __init__(
self, scope: Construct, construct_id: str, **kwargs
) — None:

super().__init__(scope, construct_id, **kwargs)

Import the existing Hosted Zone created earlier
hosted_zone = r53.HostedZone.from_lookup(
self, "EXAMPLE_ZONE_ID", domain_name="example.infracourse.cloud"

instance = ec2.Instance(
self,
"example-ec2-instance",
instance_type=ec2.InstanceType("t4g.small"),
machine_image=ec2.MachineImage.latest_amazon_1inux(

cpu_type=ec2.AmazonLinuxCpuType.ARM_64

)1
vpc=ec2.Vpc.from_lookup(self, "VPC", is_default=True)

Create a DNS record ‘a2-example.example. infracourse.cloud®
pointing at the EC2 instance's public IP address.
dns_record = r53.ARecord(

self,

zone=hosted_zone,

record_name="a2-example",

target=r53.RecordTarget.from_ip_addresses(

instance.instance_public_ip

AWS CDK Execution

e cdk synth: Synthesize the CDK to AWS CloudFormation

o AWS CloudFormation: Amazon's proprietary IaC tool that allows an entire deployment to be
specified as a single JSON file

e cdk bootstrap: Create IAM roles needed to deploy and S3 bucket to store
deployment artifacts

e cdk deploy: Deploy the generated CloudFormation to your account
o CloudFormation calls the AWS SDK to provision AWS resources

Demo: AWS CDK

Dangers of CDK

e Don't use control flow, loops, if statements, etc

o Complicates your deployment
o Makes it less clear
o Can cause unintended behavior

e Don't getlostin all the types and features
o Type annotations are your friend!

e KISS still applies

Criticisms of AWS CDK

e Leaky abstraction over Cloudformation

o Cyclical dependencies = broken deployment with no obvious checks
o Order of deployment isn't always the order the code is written in

e Opaque: Cloudformation is proprietary AWS code that doesn't run locally

e High level languages are a footgun

e General annoyances: slowness, resource limits

cloud-init

e Distribution and provider agnostic way of provisioning VMs and containers on
first deploy

o e.g.how AWS inserts your keypair into new EC2 vms

e Allows configuration using YAML files

e Warning: Make sure cloud-init is done before you do anything else on a
machine

Ansible

e Written in YAML

e Allows you to connect to many VMs or containers over a
protocol and then run tasks on all simultaneously

e Managed by an inventory file

[linux:vars]
ansihle user=administrator

[linuxl
192.

192.
192.
192.
192.
192.
192.
192.
192.
192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

170.
170.
170.
170.
171.
171.
171.
172.
172.
172.

32
132
216
222
9
12
236
93
204
223

- name: (549 demo

hosts: linux
become: yes

tasks:
- name:
shell:

run a command
"hostname|"

register: output

- name:
debug:
Nsg:

- hame:
user:

print output

"{{ output.stdous lines[0] }}"

add a user

name: 1€31228

state: present

Demo: Ansible

Ansible Fork Drama

e Ansible is developed by Red Hat

e 1In 2018, Red Hat is acquired by IBM

e Red Hat strips out many Ansible features and
creates "Ansible Core"

e Community forks Ansible, still called "Ansible"
o Just use the community version and don't think too hard

Next Lecture: Identity & Access Management (2/5)

