
CS 40 | January 31, 2024

Introduction to
Infrastructure-as-Code

Agenda

1. A Brief Historical Overview
2. Fundamental Principles of IaC
3. 5 Minute Break
4. Prominent IaC Tools

History

opa eval -b autograder/rules/ -i <(jq -s 'reduce .[] as $item ({}; .Resources += $item.Resources) |
del(.Resources.CDKMetadata)' cdk/cdk.out/yoctogram-network-stack.template.json
cdk/cdk.out/yoctogram-data-stack.template.json cdk/cdk.out/yoctogram-compute-stack.template.json)
-f json 'data.rules.main' | jq -r .result[].expressions[].value.violations[]

jq -r '"\(.resources[] | .asn)^\(.site)"' < output.jsonl | sort | uniq | grep -v 'UNKNOWN^' |
grep -v 'null^' | grep -vf <(jq -r '"\(.asn)^\(.site)"' < output.jsonl) | datamash -t^ -g 1 count 2
| sort -k2 -t^ -n

Some General Challenges:

● How do I keep track of what my infrastructure looks like?
○ A: A network diagram, (outdated) documentation, and a lot of accumulated knowledge that

no one ever bothered to write down

● How can I add more infrastructure?
○ Buy more servers, then stick them on a rack and connect them to the internal network

● How can I configure new infrastructure?
○ Run a giant magical bash script that you better hope works
○ “Saligrama’s Law of Brittleness”: The brittleness of a shell script grows exponentially with its

length

Fundamental Principles of IaC

Goal: Manage infrastructure like you manage code

Code

● Written in a programming language

● Managed using version control (Git)
○ Keep track of changes

● Run on underlying hardware

Infrastructure as Code

● Written in a programming language
○ Terraform, CDK, etc

● Managed using version control (Git)

● Run on underlying hardware
○ Some infrastructure provider

Declarative vs Imperative Paradigm

● Declarative: declare the end state of infrastructure, don't specify steps to
get there

● Imperative: write a series of steps on how to get to the end state

● Q: Should IaC be declarative or imperative?
○ A: Declarative – makes infrastructure simpler and easier to understand, avoids complexity
○ Use imperative methods only if your infrastructure is very complex and you need imperative

features

State Management

● State: the resources that are currently deployed and their status

● IaC needs to manage state
○ Understand the difference between where your infrastructure currently is and where you

want it to be
○ Also has the power to clean everything up if needed

● Workflow: Plan, then apply
○ Always check what changes your IaC is going to make!

Idempotency

● Idempotency: a property indicating that running the same deployment twice
(or more times) has the effect as running it once
○ Concept from math: f(x) = f(f(x))

● Why is this a good thing?
○ Safety: prevent unnecessary resources from being deployed (saves money)
○ Simplicity: don't have to worry about current state of infrastructure if you run a deployment

5 Minute Break

Prominent IaC Tools

DANGER: Do not modify any resources
created with IaC manually

Possible IaC Pipeline

1. Provision image
○ Packer, docker build

2. Deploy image
○ Terraform, AWS CDK, Pulumi, etc.

3. Runtime provisioning
○ cloud-init

4. Runtime management
○ Ansible, etc.

Packer

● Written in HCL or JSON
○ Hashicorp Configuration Language, essentially a less

verbose version of JSON

● Two components:
○ Builders: spin up a live base image (e.g., an EC2 VM

based on an Ubuntu AMI)
○ Provisioners: steps to configure the machine

■ Many types: shell, Ansible, file transfer, etc.

● Supports many different platforms
○ AWS, GCP, Azure, OpenStack, Proxmox
○ Can be extended using different providers

Demo: Packer

Terraform

● Written in HCL or JSON

● Purely declarative

● Contains a provider (AWS, Azure, GCP,
Proxmox, etc) followed by a list of resources

Terraform Licensing Drama

● Hashicorp develops Terraform (and many other cloud
tools)

● Terraform licensed as Mozilla Public License v2 until
August 2023

● In August 2023, license changed to Business Source
License v2 (not open source) without warning
○ Widely regarded as a bad move by the IAC/DevOps community

● Open source alternative: OpenTofu
○ Replicates the Terraform binary functionality, but not Hashicorp's

cloud services

Cloud Development Kits

● Examples: AWS CDK, CDKTF (Terraform), Pulumi

● Has the power to mix declarative and imperative programming paradigms
○ Possible footgun

● Written in a high level language
○ Python, Typescript, Go are common

AWS CDK Components

● App: The overall deployment, contains multiple stacks

● Stack: Basic unit of deployment
○ Can be deployed independently (assuming no dependencies)
○ Can have dependencies on other stacks
○ Should encapsulate individual components of deployment

■ Networking, compute, storage, etc

● Environment: AWS account and region where the deployment is to take place

Provisioning Resources in AWS CDK

● Each stack has a constructor, which creates all required resources for the stack

● The call to r53.HostedZone creates the resource; the assignment to
self.hosted_zone is only to communicate with other stacks

AWS CDK Execution

● cdk synth: Synthesize the CDK to AWS CloudFormation
○ AWS CloudFormation: Amazon's proprietary IaC tool that allows an entire deployment to be

specified as a single JSON file

● cdk bootstrap: Create IAM roles needed to deploy and S3 bucket to store
deployment artifacts

● cdk deploy: Deploy the generated CloudFormation to your account
○ CloudFormation calls the AWS SDK to provision AWS resources

Demo: AWS CDK

Dangers of CDK

● Don't use control flow, loops, if statements, etc
○ Complicates your deployment
○ Makes it less clear
○ Can cause unintended behavior

● Don't get lost in all the types and features
○ Type annotations are your friend!

● KISS still applies

Criticisms of AWS CDK

● Leaky abstraction over Cloudformation
○ Cyclical dependencies → broken deployment with no obvious checks
○ Order of deployment isn't always the order the code is written in

● Opaque: Cloudformation is proprietary AWS code that doesn't run locally

● High level languages are a footgun

● General annoyances: slowness, resource limits

cloud-init

● Distribution and provider agnostic way of provisioning VMs and containers on
first deploy
○ e.g. how AWS inserts your keypair into new EC2 vms

● Allows configuration using YAML files

● Warning: Make sure cloud-init is done before you do anything else on a
machine

Ansible

● Written in YAML

● Allows you to connect to many VMs or containers over a
protocol and then run tasks on all simultaneously

● Managed by an inventory file

Demo: Ansible

Ansible Fork Drama

● Ansible is developed by Red Hat

● In 2018, Red Hat is acquired by IBM

● Red Hat strips out many Ansible features and
creates "Ansible Core"

● Community forks Ansible, still called "Ansible"
○ Just use the community version and don't think too hard

Next Lecture: Identity & Access Management (2/5)

