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opa eval -b autograder/rules/ -i <(jq -s 'reduce .[] as Sitem ({}; .Resources += Sitem.Resources) |
del(.Resources.CDKMetadata)' cdk/cdk.out/yoctogram-network-stack.template.json
cdk/cdk.out/yoctogram-data-stack.template.json cdk/cdk.out/yoctogram-compute-stack.template.json)
-f json 'data.rules.main' | jq -r .result[].expressions[].value.violations][]

jg -r ""\( .resources[] | .asn )*\(.site)"' < output.jsonl | sort | uniq | grep -v 'UNKNOWN*' |
grep -v 'null?r' | grep -vf <(jq -r ""\(.asn)*\(.site)"' < output.jsonl) | datamash -t* -g 1 count 2
| sort -k2 -t* -n

local displayflag="$1"
shift
loca

1 songlist_verbose=$($MPC -f "$displayflag" 's@" "SE(.F)\) @ (.*/)2(.*)#\1) @ \3 @ \2\3#' "@ ' '{printf "%s @
F[[ "$(wc -1 < '$songlist_verbose")" -gt 1
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local songlist="%(awk -F ' @ 'BEGIN{OFS=" @ ";} {print $1,$2,$3}' $songlist_verbose)”
1

local chosen_song_entry="$(select_from "$songlist” "song (disambiguation)")"
f song empty (e ] lecti f
[[ -z "$chosen_song_entry” ]] && return 1
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grep -F "$chosen_song_entry"




Some General Challenges:

e How do I keep track of what my infrastructure looks like?

o A: Anetwork diagram, (outdated) documentation, and a lot of accumulated knowledge that
no one ever bothered to write down

e How canI add more infrastructure?
o Buy more servers, then stick them on a rack and connect them to the internal network

e How can I configure new infrastructure?
o Run agiant magical bash script that you better hope works
o “Saligrama’s Law of Brittleness”: The brittleness of a shell script grows exponentially with its
length



Fundamental Principles of IaC



Goal: Manage infrastructure like you manage code



Code

e \Written in a programming language

e Managed using version control (Git)
o Keep track of changes

e Runon underlying hardware




Infrastructure as Code

e \Written in a programming language
o Terraform, CDK, etc

e Managed using version control (Git)

e Run on underlying hardware

o Some infrastructure provider aWS



Declarative vs Imperative Paradigm

e Declarative: declare the end state of infrastructure, don't specify steps to
get there

e Imperative: write a series of steps on how to get to the end state

e (Q: Should IaC be declarative or imperative?
o A: Declarative — makes infrastructure simpler and easier to understand, avoids complexity
o Use imperative methods only if your infrastructure is very complex and you need imperative
features



State Management

e State: the resources that are currently deployed and their status

e IaC needs to manage state

o Understand the difference between where your infrastructure currently is and where you
want it to be
o Also has the power to clean everything up if needed

e Workflow: Plan, then apply

o Always check what changes your IaC is going to make!



Idempotency

e Idempotency: a property indicating that running the same deployment twice

(or more times) has the effect as running it once
o Concept from math: f(x) = f(f(x))

e Why is this a good thing?
o Safety: prevent unnecessary resources from being deployed (saves money)
o Simplicity: don't have to worry about current state of infrastructure if you run a deployment



5 Minute Break



Prominent IaC Tools



DANGER: Do not modify any resources
created with IaC manually



Possible IaC Pipeline

1. Provision image
o Packer,docker build

2. Deploy image
o Terraform, AWS CDK, Pulumi, etc.

3. Runtime provisioning
o cloud-init

4. Runtime management
o Ansible, etc.



Packer

e \Written in HCL or JSON

o Hashicorp Configuration Language, essentially a less
verbose version of JSON

e Two components:
o Builders: spin up a live base image (e.g., an EC2 VM
based on an Ubuntu AMI)
o Provisioners: steps to configure the machine
m  Many types: shell, Ansible, file transfer, etc.

e Supports many different platforms

o AWS, GCP, Azure, OpenStack, Proxmox
o Can be extended using different providers



"builders*: [
{
“type": "amazon-ebs",
"region": "us-west-2",
“source_ami": “"ami-@76falac9a95aef2e",
"instance_type": “t4g.small",
“ssh_username": “"ubuntu",
"ami_name": “cs4@-assignment2-ubuntu-22.04-1ts-with-tools-{{timestamp}}"
¥
1,
“provisioners": [

{

" TP T &

I “inline": ["/usr/bin/cloud-init status —-wait"] I

“type: "file",
“"source": "99_user_defaults.cfg",
“destination": "/tmp/99_user_defaults.cfg"

“type": "shell",
“inline": [ “sudo mv /tmp/99_user_defaults.cfg /etc/cloud/cloud.cfg.d/99_user_defaults.cfg" 1]

“"type": "shell",
"inline": [
“sudo apt-get update",
“sudo apt-get install -y jq",
“sudo apt-get install -y ca-certificates curl gnupg unzip python3-venv python3-pip uidmap",
“sudo mkdir -p /etc/apt/keyrings",
“curl -fsSL https://deb.nodesource.com/gpgkey/nodesource-repo.gpg.key | sudo gpg --dearmor -o /etc/apt/keyrings/nodesource.gpg",
“echo 'deb [signed-by=/etc/apt/keyrings/nodesource.gpg] https://deb.nodesource.com/node_20.x nodistro main' | sudo tee /etc/apt/sources.list.d/nodesource.list",
“sudo apt-get update && sudo apt-get install -y nodejs",
“sudo npm install -g aws-cdk",
“rm -rf /tmp/aws"

h



Demo: Packer



Terraform

e \Written in HCL or JSON

e Purely declarative

e Contains a provider (AWS, Azure, GCP,
Proxmox, etc) followed by a list of resources
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"ami-0c94855ba9g

"t2.micro"







Terraform Licensing Drama

e Hashicorp develops Terraform (and many other cloud
tools)

HashiCorp

e Terraform licensed as Mozilla Public License v2 until
August 2023

e In August 2023, license changed to Business Source .
License v2 (not open source) without warning

o Widely regarded as a bad move by the IAC/DevOps community

e Open source alternative: OpenTofu
o Replicates the Terraform binary functionality, but not Hashicorp's
cloud services



Cloud Development Kits

e Examples: AWS CDK, CDKTF (Terraform), Pulumi

e Has the power to mix declarative and imperative programming paradigms
o Possible footgun

e Written in a high level language
o Python, Typescript, Go are common



AWS CDK Components

e App: The overall deployment, contains multiple stacks

e Stack: Basic unit of deployment
o Can be deployed independently (assuming no dependencies)
o Can have dependencies on other stacks
o Should encapsulate individual components of deployment
m Networking, compute, storage, etc

e Environment: AWS account and region where the deployment is to take place



props = Props()
env = cdk.Environment(account=settings.CDK_DEFAULT_ACCOUNT, region=settings.REGION)

dns_stack = DnsStack(app, f"{settings.PROJECT_NAME}-dns-stack", env=env)
props.network_hosted_zone = dns_stack.hosted_zone

network_stack = NetworkStack(
app, f"{settings.PROJECT_NAME}-network-stack"”, props, env=env
)
props.network_vpc = network_stack.vpc
props.network_backend_certificate = network_stack.backend_certificate
props.network_frontend_certificate = network_stack.frontend_certificate

data_stack = DataStack(app, f"{settings.PROJECT_NAME}-data-stack", props, env=env)
props.data_aurora_db = data_stack.aurora_db

props.data_s3_public_images = data_stack.s3_public_images
props.data_s3_private_images = data_stack.s3_private_images

props.data_cloudfront_public_images = data_stack.cloudfront_public_images

props.data_cloudfront_private_images = data_stack.cloudfront_private_images
compute_stack = ComputeStack(

app, f"{settings.PROJECT_NAME}-compute-stack"”, props, env=env
data_stack.add_dependency(network_stack)

compute_stack.add_dependency(data_stack)

app.synth()




Provisioning Resources in AWS CDK

e Each stack has a constructor, which creates all required resources for the stack

class DnsStack(Stack):
hosted_zone: r53.IHostedZone

def __init__(self, scope: Construct, construct_id: str, kwargs) — None:
super().__init__(scope, construct_id, **kwargs)

hosted_zone rb53.HostedZone(

’

f"{settings.PROJECT_NAME :
zone_name=settings.SUNET_DNS_ROOT,

e Thecalltor53.HostedZone creates the resource; the assignment to
self.hosted_zone is only to communicate with other stacks



from aws_cdk import (
Stack,
aws_ec2 as ec2,
aws_routeb3 as rb3

)
class ExampleStack(Stack):
def __init__(
self, scope: Construct, construct_id: str, **kwargs
) — None:

super().__init__(scope, construct_id, **kwargs)

# Import the existing Hosted Zone created earlier
hosted_zone = r53.HostedZone.from_lookup(
self, "EXAMPLE_ZONE_ID", domain_name="example.infracourse.cloud"

instance = ec2.Instance(
self,
"example-ec2-instance",
instance_type=ec2.InstanceType("t4g.small"),
machine_image=ec2.MachineImage.latest_amazon_1inux(

cpu_type=ec2.AmazonLinuxCpuType.ARM_64

)1
vpc=ec2.Vpc.from_lookup(self, "VPC", is_default=True)

# Create a DNS record ‘a2-example.example. infracourse.cloud®
# pointing at the EC2 instance's public IP address.
dns_record = r53.ARecord(

self,

zone=hosted_zone,

record_name="a2-example",

target=r53.RecordTarget.from_ip_addresses(

instance.instance_public_ip



AWS CDK Execution

e cdk synth: Synthesize the CDK to AWS CloudFormation

o AWS CloudFormation: Amazon's proprietary IaC tool that allows an entire deployment to be
specified as a single JSON file

e cdk bootstrap: Create IAM roles needed to deploy and S3 bucket to store
deployment artifacts

e cdk deploy: Deploy the generated CloudFormation to your account
o CloudFormation calls the AWS SDK to provision AWS resources



Demo: AWS CDK



Dangers of CDK

e Don't use control flow, loops, if statements, etc

o Complicates your deployment
o Makes it less clear
o Can cause unintended behavior

e Don't getlostin all the types and features
o Type annotations are your friend!

e KISS still applies



Criticisms of AWS CDK

e Leaky abstraction over Cloudformation

o Cyclical dependencies = broken deployment with no obvious checks
o Order of deployment isn't always the order the code is written in

e Opaque: Cloudformation is proprietary AWS code that doesn't run locally

e High level languages are a footgun

e General annoyances: slowness, resource limits



cloud-init

e Distribution and provider agnostic way of provisioning VMs and containers on
first deploy

o e.g.how AWS inserts your keypair into new EC2 vms

e Allows configuration using YAML files

e Warning: Make sure cloud-init is done before you do anything else on a
machine



Ansible

e Written in YAML

e Allows you to connect to many VMs or containers over a
protocol and then run tasks on all simultaneously

e Managed by an inventory file



[linux:vars]
ansihle user=administrator

[linuxl
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192.
192.
192.
192.
192.
192.
192.
192.
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168.
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168.
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32
132
216
222
9
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93
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223

- name: (549 demo

hosts: linux
become: yes

tasks:
- name:
shell:

run a command
"hostname|"

register: output

- name:
debug:
Nsg:

- hame:
user:

print output

"{{ output.stdous lines[0] }}"

add a user

name: 1€31228

state: present



Demo: Ansible



Ansible Fork Drama

e Ansible is developed by Red Hat

e 1In 2018, Red Hat is acquired by IBM

e Red Hat strips out many Ansible features and
creates "Ansible Core"

e Community forks Ansible, still called "Ansible"
o Just use the community version and don't think too hard




Next Lecture: Identity & Access Management (2/5)



