
CS 40 | February 5, 2024

Identity and Access Management
Cloud Security Part I

Aside: ClickOps → IaC

Amazon Resource Name (ARN)

Unique identifiers for AWS resources.

arn:partition:service:region:account-id:resource-type:resource-id

● Partition: a group of AWS regions (aws, aws-cn, aws-us-gov)
● Service: an AWS product (e.g. s3, ec2, rds)
● Region: code for AWS region/datacenter (us-east-1, us-west-2)

○ Can sometimes be blank, e.g. for global services (Route 53, Cloudfront)
● Account ID: 12-digit Account ID of resource owner

○ Can sometimes be blank, e.g. for services uniquely named across accounts (S3)
● Resource Type: Type of the resource (e.g. vpc under ec2)

○ Can sometimes be blank, if the service has only one resource type (e.g. S3)
● Resource ID: Unique identifier for the resource (e.g. bucket name)

Amazon Resource Name (ARN)

Unique identifiers for AWS resources.

arn:aws:rds:us-west-2:850592110309:cluster:yoctogram-database

Methods of Accessing AWS

● AWS Console (“clickops”)
● AWS CLI
● AWS Software Development Kit (SDK)

An interaction with AWS via any of these methods
creates an API call (an Action) – keep this in mind
for the rest of the lecture.

AWS SDK

Interact with AWS services from your application using native language constructs

Note: In CS40, we usually talk about infrastructure as separate from app logic.
The AWS SDK allows your application to interact with the infrastructure.

Example: AWS SDK

presigned_url = s3_client.generate_presigned_url(

 "get_object",

 Params=parse_s3_uri(s3_uri)

 | {

 "ResponseContentType": content_type,

 "ResponseCacheControl": f"private, max-age={cache_age}, immutable",

 },

 ExpiresIn=settings.CLOUDFRONT_PRESIGNED_URL_EXPIRY,

)

Create a URL for
external access to an
S3 bucket.

Example: AWS SDK

stsSvc := sts.NewFromConfig(sdkConfig)

result, err := stsSvc.GetCallerIdentity(

 context.TODO(),

 &sts.GetCallerIdentityInput{}

)

if err != nil {

 log.Println(err)

 return err

}

accountID := *result.Account

Retrieve the AWS
Account ID for the
account the code is
running in.

Identity and Access Management

IAM Conceptual Model

IAM Users

● Give scoped access to AWS account resources to additional users beyond the
root user
○ Scoped: limited permissions to accomplish specific tasks

● Typically, not best practice to assign human users IAM user accounts directly
○ Instead, use IAM Identity Center (later)

Key IAM Definitions (Agent-Side)

● Principal: A human user or workload that can make a request for an action or
operation on an AWS resource
○ e.g. Cody using the AWS CLI, or code running on an EC2 instance

● Role: An IAM construct that can be assigned scoped permissions
○ Principals can be assigned, or assume, roles; multiple principals can assume a single role
○ Each principal can only assume one IAM role at a time, but may have permissions for multiple

● Policy: A listing of the permissions that IAM principals or roles are given
○ Written in JSON
○ e.g. Allow read and write to all S3 buckets starting with cs40-teaching-assistant-

Key IAM Definitions (Resource-Side)

● Resource: Objects within AWS services
○ e.g. EC2 VMs, S3 buckets

● Action: Operations performed on resources, specific to services
○ e.g. create an EC2 VM, list objects in an S3 bucket

● Policy: A listing of the permissions that govern access to the resource itself
○ e.g. deny public downloads from the S3 bucket

Note that IAM policies can apply
to both principals and resources!

Given a principal (maybe assuming a role) who
wants to perform an action on a given resource, AWS
decides whether to authorize or deny the request by
evaluating the principal’s or resource’s policy.

Example Principal Policy (1)

{

 "Version": "2012-10-17",

 "Statement": [{

 "Effect": "Allow",

 "Action": "*",

 "Resource": "*"

 }]

}

AdministratorAccess:
Allow every action on
every resource

Example Principal Policy (2)

{ "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "rds:*",
 "Resource": ["arn:aws:rds:region:*:*"]
 }, {
 "Effect": "Allow",
 "Action": ["rds:Describe*"],
 "Resource": ["*"]
 }]
}

Wildcards allowed in
ARNs and actions

Example Principal Policy (3)

{

 "Effect": "Deny",

 "Action": "ec2:RunInstances",

 "Resource": "*",

 "Condition": {

 "StringNotEquals": {

 "ec2:ResourceTag/Owner": "${aws:username}"

 }

 }

}

Policies can deny access too!
Prevent user from launching
EC2 instances that are not
tagged as being owned by them

Interactive: What permissions do we need here?

presigned_url = s3_client.generate_presigned_url(

 "get_object",

 Params=parse_s3_uri(s3_uri)

 | {

 "ResponseContentType": content_type,

 "ResponseCacheControl": f"private, max-age={cache_age}, immutable",

 },

 ExpiresIn=settings.CLOUDFRONT_PRESIGNED_URL_EXPIRY,

)

Create a URL for
external access to an
S3 bucket.

Interactive: What permissions do we need here?

{ "Action": [

 "s3:GetBucket*",

 "s3:GetObject*",

],

 "Resource": [

 "arn:aws:s3:::yoctogram-private-images",

 "arn:aws:s3:::yoctogram-public-images",

 "arn:aws:s3:::yoctogram-private-images/*",

 "arn:aws:s3:::yoctogram-public-images/*"

],

 "Effect": "Allow" }

Read access to all
objects in the private
and public S3 buckets.

Example Resource Policy
{

 "Effect": "Deny",

 "Principal": { "AWS": "*" },

 "Action": "s3:*",

 "Resource": [

 "arn:aws:s3:::yoctogram-public-images",

 "arn:aws:s3:::yoctogram-public-images/*"

],

 "Condition": {

 "Bool": { "aws:SecureTransport": "false" }

 }

}

Deny access to the S3
bucket if the request
doesn’t use HTTPS.

IAM Roles: Attaching Policies to Principals

● IAM roles are a way to temporarily grant specific permissions to specific
principals
○ Principal assumes role that has policies (allow / deny) attached

● Two components
○ Permission Policy: What can the role do? (previous slides)
○ Trust Policy: Who can assume the role?

Assuming IAM Roles

● Access to roles is granted via Security Token Service (STS)

aws sts assume-role \
--role-arn arn:aws::iam:123456789012:role/my_role \
--role-session-name my_session

● Outputs:
○ Access Key ID
○ Access Key Secret
○ Session Token
○ Setting as environment variables for AWS API calls (via CLI) grants access to role permissions

Note: AWS services assume roles through internal STS API calls (e.g. EC2 thru IMDS)

Demo: Assuming IAM roles

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

{

 "Effect": "Allow",

 "Principal": {

 "AWS": "arn:aws:iam::111122223333:user/btripp"

 },

 "Action": "sts:AssumeRole"

}

All trust policies apply to
Principals and allow the
sts:AssumeRole action.

IAM Role Trust Policies

Motivation: don’t want arbitrary principals to assume roles with access to sensitive resources.

{

 "Effect": "Allow",

 "Principal": {

 "Service": "ecs.amazonaws.com"

 },

 "Action": "sts:AssumeRole"

}

Trust policy principals can
be services, too!

Common Cloud Security Footguns

The Shared Responsibility Model

AWS assumes responsibility for its own infrastructure.
You assume responsibility for how you use AWS’s infrastructure.

Publicly Exposed S3 Buckets

● Occurs when S3 buckets containing sensitive data don’t have a block all
public access resource policy

● AWS will warn you about this, but some let the warnings go unheeded –
especially if trying to get things to just work

Mitigation: Pre-Signed S3 URLs

● Temporarily grant public access to S3 objects by having a trusted party (e.g.,
your backend) pre-sign a URL to access a specific resource
○ Works for GET/POST/PUT access for retrieve, modify, and create

Yoctogram (Assignment 2) serves images this way!

Triggering AWS Actions from Frontend

● Recall: Frontend is Untrusted

● Trying to directly access AWS resources
that need authentication means you put
AWS access credentials in the frontend
● This allows attackers to authenticate directly

to your AWS account!

● Mitigation: Create API endpoints to
trigger actions, with auth and rate limits
○ e.g. directly in your application w/ AWS SDK
○ e.g. Lambda and API Gateway (next week)

Overscoped IAM Policies

● Ensure IAM permissions attached to principals / roles only allow least
possible access to make things work
○ “With granular power comes granular responsibility”

● Ensure arbitrary principals can’t assume IAM roles with elevated privileges

Interactive: Overscoped IAM Permissions Policy
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
],
 "Resource": [
 "arn:aws:s3:::demo",
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
],
 "Resource": "*"
 }

What’s wrong
with this policy?

Interactive: Overscoped IAM Permissions Policy
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
],
 "Resource": [
 "arn:aws:s3:::demo",
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
],
 "Resource": "*"
 }

Allows you to create an
access key for the root user!

Interactive: Overscoped IAM Permissions Policy
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
],
 "Resource": [
 "arn:aws:s3:::demo",
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }

Restrict to creating access
keys for the specific user only.

Wildcard IAM Trust Policy

{

 "Effect": "Allow",

 "Principal": { "*" },

 "Action": "sts:AssumeRole"

}

Allows anyone to assume a
role with potentially
elevated privileges.

Easy Cloud Security Best Practices

AWS Organizations and IAM Identity Center (SSO)

● Instead of having one account with all AWS
resources for an organization, use AWS
Organizations to separate distinct concerns
into separate hierarchical accounts

● Use AWS IAM Identity Center to delegate
user access to AWS accounts
○ This is an easy way to implement Single Sign On,

even without a real SSO provider!
○ IAM Identity Center is free

Demo: IAM Identity Center

Security for Human IAM Users

● Within IAM Identity Center: enforce multi-factor authentication for all users
○ AWS accounts are a significant target for cyberattacks – even for small startups!

● Don’t use long-lived credentials for command-line authentication
○ aws sso login is your friend

Deploy Using IaC Only

● As with last lecture: IaC gives you a consistent source of truth on the state of
your infrastructure

● Allows you to more easily audit your resources, and enforce some previously
mentioned security policies

● More next lecture

Next Lecture:
Auditing, Logging, and Observability (2/7)

