
CS 40 | February 7, 2024

Auditing, Logging, and Observability
Cloud Security Part II

More (harder) Cloud Security Best Practices

Open Policy Agent

● Enforce security policies on cloud deployments when
using IaC
○ e.g., “ensure that S3 buckets are not exposed to the public”

● Can be embedded in deployment pipelines or IaC
state management systems (e.g., Terraform Cloud)

Example: Open Policy Agent

fail contains msg if {

 buckets := [bucket | bucket := input.Resources[_]; bucket.Type == "AWS::S3::Bucket"]

 configs := buckets[_].Properties.PublicAccessBlockConfiguration

 not checkBucketRestricted(configs)

 msg := sprintf("S3 buckets should block public access”, [])

}

From the Assignment 2 autograder

Cloud Security Products

● Cloud Security Posture Management (CSPM): software that scans cloud
resources and IaC to spot misconfigurations and insecurities

● Cloud Native Application Protection Platform (CNAPP): CSPM plus more
active application monitoring (e.g. with agents on compute resources)

Observability

Observability is the ability to ask arbitrary
questions about a system without having to
know ahead of time what to ask.

Why is observability important?

Print statements (plus more) for deployed applications

● Debugging: If “something” in your deployed application doesn’t work
○ Where in the chain did something go wrong?
○ Isolate the behavior of the failed component + potential logical assumptions surrounding it

● Performance: If “something” in your deployed application feels slow
○ Profile the slowest components of the application, to know where optimizations are needed

● Security: If an attacker was able to exploit “something” in your application
○ Where did the exploit originate?
○ How much damage was the attacker able to do?

Logging

Logging from an Application Perspective
Access and security logs

● For each web request, trace:
○ IP address of client
○ Path requested
○ Response status

● Usually generated by underlying web
server or load balancer

Application event logs

● For each web request, trace:
○ Handoffs between services
○ Control flow abnormality
○ Errors, exceptions, warnings

● Log levels:
○ DEBUG
○ INFO
○ WARNING
○ ERROR

● Generated by application itself

Example: Application Event Logs

Example: Access and Security Logs

Application Log Management

ELK (Elastic) stack, open-source*: Elasticsearch, Logstash, Kibana

1. Logstash ingests incoming application logs
2. Elasticsearch allows easy searching and analytics of logs
3. Kibana helps create visualizations from logs

Elastic Licensing Drama

● In April 2021, Elastic (ELK stack parent company/developer) relicensed
Elasticsearch and Kibana from Apache License 2.0 (open-source) to
Server-Side Public License (source-available)

● Why this is bad: SSPL forces anyone (e.g. cloud providers) offering ELK as a
service to open-source all supporting code – which is infeasible

● In response, AWS forked Elasticsearch and Kibana to create OpenSearch,
which is still Apache License 2.0

Service Logging

● Application logging isn’t always enough

● Sometimes, need visibility into underlying infrastructure to debug
○ “Did my web request make it through the load balancer to my container?”

● AWS CloudWatch unifies application and service logs into a single place

AWS CloudWatch

● Log aggregation service for AWS resources

● Each resource forwards logs to a log group
○ Both application and service logs

● Logs are sharded into log streams
○ Representing log events from same logical source –

e.g. individual containers

Pros and Cons of CloudWatch

Pros:

● Unify AWS application and service logging in the same place
● Integrate with other AWS services for alarms and visualizations

Cons:

● UI makes it difficult to trace individual events and find issues
● Pricing

CloudWatch Pricing

● Ingestion: $0.50/GB
○ Footgun: this gets charged at raw data size, even when the data is transmitted compressed!

● Retention: $0.03/GB

● Querying: $0.005/GB scanned

This gets expensive when dealing with many resources all logging to CloudWatch.

Security Information and Event Management

● Log management plus network information collection with a security focus

● Anomaly detection to find and alert to potential security events like intrusions

Using Logs in Practice

● Goal: Isolate the source of the problem by understanding where it is not

● Possible methods:
○ Filter logs to only those of the affected users
○ Identify the component causing the issue; use logs to discover which parts of the pipeline are

working properly
○ Use your intuition to identify why the problem is occurring

Logs usually don't tell you what's going wrong directly – but they yield important
context.

Using Logs in Practice

Error resolution scenario: some users are unable to access the website

Using Logs in Practice

Security incident scenario: you find a big bill and unknown ECS clusters created

Metrics & Monitoring

Motivation

● Proactively and reactively observe the state of a deployed system
○ To know what changes may need to be made for continued reliability
○ To anticipate future demand and scaling

● Goal: decrease mean time to recovery – the time it takes to return to normal
operation following an incident
○ Alert to start the incident response process as soon as an issue is detected

What should be monitored?

● Latency: how long does it take to service a request?

● Traffic: how much demand is being placed on the system?

● Errors: what requests fail and why, and context surrounding failures

● Saturation: how much demand are compute and storage resources under?
○ e.g. CPU & memory usage, I/O saturation

Google SRE – The Four Golden Signals, 2017

Metric Granularity

● Metric collection windows are contextual
○ CPU load should be observed at ~seconds frequencies: utilization spikes don’t last long
○ But probing for storage saturation or web server errors can be less frequent

● Overcollecting metrics can be costly!

Tracing

● Motivation: like a stack trace for distributed processes, with performance
profiling

● This gives you more details and context around both errors and latency
events

Prometheus & Grafana

Open-source metrics collection and management.

Comprehensive Observability Platforms

Integrate logging and metrics into one platform – mostly a commercial space

Why is observability so expensive?

Next Lecture: Serverless Compute (2/12)

