Continuous Integration
Continuous Deployment

CS 40 | February 21, 2024

Assignment 3 Released (due 2/27)

Final Project Handout Released (due 3/17)

I pushed some new code
to my Git repository! How
do I get it into production?

Vi1 CONTINUOUS INTEGRATION

AUTOMATED

CONTINUOUS DELIVERY

CONTINUOUS DEPLOYMENT

£ AUTOMATED

APPROVE DEPLOY @
AUTOMATIC DEPLOY @

> (0)

> (0)

\/7

Source CONTROL
COMMIT CHANGES

BuiLp
RUN BUILD AND UNIT TESTS

STAGING
DEPLOY TO TEST ENVIRONMENT
RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS

PRODUCTION
DEPLOY TO PRODUCTION
ENVIRONMENT

...[S your code in a state that can
integrate with the production codebase?

This branch is 46 commits ahead of, 24 commits behind main .

~/Documents/GitHub/infracourse/web-private-demo git:(main) 09:40 pm (0.027s)
git merge origin/project-work

fatal: refusing to merge unrelated histories

~/Documents/GitHub/infracourse/web-private-demo git:(main) 09:41 pm (0.078s)
git merge origin/a2-cody-edits
Auto-merging content/assignments/2.md

CONFLICT (content): Merge conflict in content/assignments/2.md
Automatic merge failed; fix conflicts and then commit the result.

Continuous Integration

General best practices surrounding clean codebase handling.

1. Ensure the main branch is always a working, production-ready software state
2. Ensure development branches track closely with the main branch

3. Build and test every candidate change to the main branch

Release 12.1 Release 12.2

& A& x T

Developers don’t commit
to release branches

. \] f t

Trunk-Based Development at scale is best done with short-lived feature branches: one person

over a couple of days (max) and flowing through Pull-Request style code-review & build
automation before “integrating” (merging) into the trunk (or master)

Paul Hammant, Trunk-Based Development, 2013

No merge conflicts! But does
your code actually work?

Types of Production Software Testing

e Unit testing: Test that individual functions work as expected

o e.g.forafunctionsum(a, b) » c, doessum(1, 1) return2?
o Can be trivially automated

e Integration testing: Test that components of an application work together

o e.g.if acandidate change targets service A, does service B that needs data from A still work?
o Can be automated, but is more technically involved

e End-to-end testing: Test that the entire application works as intended

o e.g.if acandidate change targets service A, does the entire application still work?
o Can be automated, but is very technically involved

Automated testing requires
cloud (nfrastructure.

Deployment Environments

e Development environment: Local (e.g. development laptop, virtualized
codespace) testing for quick iteration

e Staging environment: Mirror of the production environment (i.e. latest

mainline code changes)
o Automated tests happen here

e Production environment: Live environment served to users
o Availability and security is critical; should be handled cleanly and separately from dev

Mechanics of Automated Testing

1. Watch for mainline candidate changes (usually PRs and commits to main)

2. Trigger build of software with new changes
a. Binary executable if compiled language
b. Usually a container build regardless

c. Only need to build the service the change targeted, if using microservices

3. Runtests and output results

a. Block a merge to mainline, or further deployment, if failures found

Hosted CI Platforms

e Open source, self-hosted CI: Jenkins (2011)

(@)
(@)

Mostly intended for package releases rather than web services
Define build and test pipelines through UI or through Groovy
script language

Unreliable, needs many third-party plugins to work, bad UI/UX
Security: remote code execution as a feature (e.g. January
2023 no-fly list breach)

CHECK ITOUT-I MADE A
FULLY AUTOMATED DATA
PIPELINE THAT COLLECTS
AND PROCESSES ALL THE
INFORMATION WE NEED.

15 IT A GIANT HOUSE OF CARDS
BUILT FROM RANDOM SCRIPTS
THAT WILL ALL COMPLETELY

COLLAPSE THE MOMENT ANY
INPUT DOES ANYTHING WEIRD?

IT... MIGHT NOT GE.
T GUESS THAT'S SOMETH-

WHOOPS, JUST

COLLAPSED. HANG

ON, I CAN PATCH IT.
X

Hosted CI Platforms

e Open source, self-hosted CI: Jenkins (2011)
o Mostly intended for package releases rather than web services
o Define build and test pipelines through UI or through Groovy
script language s
Unreliable, needs many third-party plugins to work, bad UI/UX \V’

Security: remote code execution as a feature (e.g. January a
‘l

2023 no-fly list breach)

e (Il asaservice: Travis CI, Circle CI (2011), AWS
CodeBuild/CodePipelines (2014-15)

o More secure and reliable
o Build and test pipelines that can integrate better with version

control and cloud environment

GitHub Actions

e Configure workflows to be run on any Git/GitHub event

o e.g.pushed commit, opened pull request, manual triggers
e Workflows are made up of jobs (containers) with e
multiple steps (executions) run on runners (VMs) Q O
o All configured using YAML in the .github/workflows directory
of a repository
o Runners can be hosted by GitHub (charged by compute time) or .
self-hosted

e Introduced in 2018; quickly became industry standard

o Often a starting point for any CI/CD setup, even if using external
providers

Demo: GitHub Actions

Great, your code works! Let’s continue...

Vi1 CONTINUOUS INTEGRATION

AUTOMATED

CONTINUOUS DELIVERY

CONTINUOUS DEPLOYMENT

£ AUTOMATED

APPROVE DEPLOY @
AUTOMATIC DEPLOY @

> (0)

> (0)

\/7

Source CONTROL
COMMIT CHANGES

BuiLp
RUN BUILD AND UNIT TESTS

STAGING
DEPLOY TO TEST ENVIRONMENT
RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS

PRODUCTION
DEPLOY TO PRODUCTION
ENVIRONMENT

Motivation

e Traditional method of deployment: SSH into your production
server/VM, run git pull, and restart the server

e Multiple problems with this approach:

o Inefficient: every deploy is manual and takes human time

o Insecure: Developers/DevOps engineers have direct SSH
access to production, compromise would be bad

o Incompatible with serverless design: With serverless
architectures, you don’t have a single production server

Continuous Delivery, Continuous Deployment

Idea: Automate the deployment to a staging server.
Then automate the deployment to production.

. AUTOMATIC

MANUAL

Continuous integration

ACCEPTANCE DEPLOY TO
BUILDS [TEST [TEST STAGING

Continuous delivery

ACCEPTANCE DEPLOY TO DEPLOY TO
BUILDS - ---| TEST - -- 18 TEST . . prODUCTION B SMOKE TESTS

Continuous deployment

Configuring CD

e Key issue: once we have a built, release-ready artifact (from CI), how do we
get it onto production cloud infrastructure?

e Consider two types of changes:
o Application logic changed, but supporting infrastructure doesn’t change
o Supporting infrastructure changed

Configuring CD for Application Logic Changes

Insight: we only need to update compute resources here!

e In general: IaC best practice is to define the containing resource for
frequently changed resources, without defining resource specifics

e e.g.if using container deployments with AWS ECS:
o Deploy the updated container image to AWS Elastic Container Registry (ECR)
o Force a new deployment using the updated container build
o Helpfully, AWS provides reusable GitHub Actions to do this.

Configuring CD for Infrastructure Changes

e Consider whether stateful resources (e.g. databases, S3) need to change

o Some IaC providers, including CDK and Terraform, support lifecycle policies that prevent
stateful resource deletion if configured

e Separate IaC stacks by resource change frequency

o e.g. network stack does not change often, data stack changes less frequently; compute stack
changes often
o Allows only redeploying more frequently changed resources, which is faster and less brittle

e Trigger the infrastructure change automatically
o e.g.runcdk deployorterraform apply from GitHub actions
o At larger companies, this task often goes to infrastructure engineers for manual review

CI/CD has now been configured to
get my code into production! How
do I know it won’t break anything?

Vi1 CONTINUOUS INTEGRATION

AUTOMATED

CONTINUOUS DELIVERY

CONTINUOUS DEPLOYMENT

£ AUTOMATED

APPROVE DEPLOY @
AUTOMATIC DEPLOY @

> (0)

> (0)

\/7

Source CONTROL
COMMIT CHANGES

BuiLp
RUN BUILD AND UNIT TESTS

STAGING
DEPLOY TO TEST ENVIRONMENT
RUN INTEGRATION TESTS, LOAD TESTS, AND OTHER TESTS

PRODUCTION
DEPLOY TO PRODUCTION
ENVIRONMENT

Automatic Deployment vs Manual Review

After code review: new code should be vetted such that it won’t break

production
o Typical practice at medium+ companies is to require 1-2 approvals for a merge, from those
who are well acquainted with that part of the codebase (“codeowners”)

Automatically deploying any merged mainline code to production benefits:

o Development velocity: after code review, no extra human effort is taken to deploy
o Ifanything goes wrong, more eyes who could help fix it recently looked at the changed code

For sensitive changes (e.g. compliance/regulation related, or infrastructure),
automate change deployment after manual approval of staging resource

Controlling Code Paths in Production

Even if new code (s deployed to production, it may not need to be immediately
accessible to (all) users.

Feature flag: Gate access to new or changed features or functionality by centrally
checking if that feature should be shown to a particular user.

1f flag _provider.query("enable-analytics-cookies"):

response.set_cookie("analytics", generate_analytics_cookie())

This (s complex machinery! How
do we make this all secure?

Security Considerations for CI/CD

e Recall: testing and deploying requires control plane

access to your cloud environment

o Thus, CI/CD environment must be strongly isolated from dev
environments, as well as other people’s CI/CD instances (for SaaS)

o Challenge: How do we securely authenticate the CI/CD control
plane to the cloud environment?

e Old way (pre-2021): Store long-lived IAM user access

credentials as encrypted secrets in CI/CD provider

o Problem: if CI/CD provider is breached, then attackers have
long-lived access to your cloud environment

Security

CircleCl warns customers to rotate
‘any and all secrets’ after hack

Carly Page @carlypage_ / 4:24 AM PST » January 5, 2023] comment

=] Image Credits: Boris Zhitkov / Getty Images

CI/CD - Cloud Environment, More Securely

e November 2021: GitHub introduces OpenID Connect support for Actions
o Configure GitHub Actions to retrieve short-lived access tokens for deployment roles

Cloud Provider

OIDC Trust

Resources

Roles

(3)
JSON Web Token

Cloud Role ID

O!

ccess Token

GitHub Actions

Workflow

GitHub OIDC
Provider

Aside: GitHub Actions OIDC Footgun

Recall: IAM Role Trust Policy allows

specifying who can assume the role

o For GitHub Actions, check token fields on the
AWS side to make sure only the correct
repository action assumes the role

When trust policy is underspecified, any
repository from any owner can assume the
(privileged) deployment role

o Allows attackers to have (short-lived, but
renewable) cloud environment access

UK government was affected in mid 2023

$.DATADOG Security Labs

nnnnnnnn

No keys attached: Exploring GitHub-to-
AWS keyless authentication flaws

July 27, 2023

CI/CD pipelines are attractive attack
targets due to privileged cloud
environment access, as well as
access to the production codebase.

Cloud Security

Anatomy of a Cloud Supply Pipeline
Attack

® 5 min. read

Written by: Nathaniel Quist

Supply chain attacks targeting third-party vendors, open-source software, or other components within
a supply chain have been on the rise. As organizations increasingly rely on complex supply chains and
external partnerships, attackers are exploiting these connections as potential entry points. The
increased adoption of open-source software and cloud-based services has also expanded the attack
surface for supply chain threats. High-profile incidents, such as the SolarWinds attack in 2020, have
demonstrated the potential impact and reach of supply chain attacks, compelling organizations to

prioritize supply chain security and improve their defenses against such threats.

Researchers demo new CI/CD attack
techniques in PyTorch supply-chain

News Analysis
Jan 12,2024 « 11 mins

Supply Chain ‘ ’ Vulnerabilities

The proof of concept shows it's possible tdupload malicious PyTorch releases to GitHub
by exploiting insecure misconfigurations in GitHub Actions.

Next Lecture: Fireside Chat on
Large-Scale Cloud Deployments (2/26)
GUEST LECTURE by Maria Zhang (Google)
Mandatory (graded) attendance

