
CS 40 | February 21, 2024

Continuous Integration
Continuous Deployment

Assignment 3 Released (due 2/27)

Final Project Handout Released (due 3/17)

I pushed some new code
to my Git repository! How
do I get it into production?

…is your code in a state that can
integrate with the production codebase?

Continuous Integration

General best practices surrounding clean codebase handling.

1. Ensure the main branch is always a working, production-ready software state

2. Ensure development branches track closely with the main branch

3. Build and test every candidate change to the main branch

Paul Hammant, Trunk-Based Development, 2013

No merge conflicts! But does
your code actually work?

Types of Production Software Testing

● Unit testing: Test that individual functions work as expected
○ e.g. for a function sum(a, b) → c, does sum(1, 1) return 2?
○ Can be trivially automated

● Integration testing: Test that components of an application work together
○ e.g. if a candidate change targets service A, does service B that needs data from A still work?
○ Can be automated, but is more technically involved

● End-to-end testing: Test that the entire application works as intended
○ e.g. if a candidate change targets service A, does the entire application still work?
○ Can be automated, but is very technically involved

Automated testing requires
cloud infrastructure.

Deployment Environments

● Development environment: Local (e.g. development laptop, virtualized
codespace) testing for quick iteration

● Staging environment: Mirror of the production environment (i.e. latest
mainline code changes)
○ Automated tests happen here

● Production environment: Live environment served to users
○ Availability and security is critical; should be handled cleanly and separately from dev

Mechanics of Automated Testing

1. Watch for mainline candidate changes (usually PRs and commits to main)

2. Trigger build of software with new changes
a. Binary executable if compiled language
b. Usually a container build regardless
c. Only need to build the service the change targeted, if using microservices

3. Run tests and output results
a. Block a merge to mainline, or further deployment, if failures found

Hosted CI Platforms

● Open source, self-hosted CI: Jenkins (2011)
○ Mostly intended for package releases rather than web services
○ Define build and test pipelines through UI or through Groovy

script language
○ Unreliable, needs many third-party plugins to work, bad UI/UX
○ Security: remote code execution as a feature (e.g. January

2023 no-fly list breach)

Hosted CI Platforms

● Open source, self-hosted CI: Jenkins (2011)
○ Mostly intended for package releases rather than web services
○ Define build and test pipelines through UI or through Groovy

script language
○ Unreliable, needs many third-party plugins to work, bad UI/UX
○ Security: remote code execution as a feature (e.g. January

2023 no-fly list breach)

● CI as a service: Travis CI, Circle CI (2011), AWS
CodeBuild/CodePipelines (2014-15)
○ More secure and reliable
○ Build and test pipelines that can integrate better with version

control and cloud environment

GitHub Actions

● Configure workflows to be run on any Git/GitHub event
○ e.g. pushed commit, opened pull request, manual triggers

● Workflows are made up of jobs (containers) with
multiple steps (executions) run on runners (VMs)
○ All configured using YAML in the .github/workflows directory

of a repository
○ Runners can be hosted by GitHub (charged by compute time) or

self-hosted

● Introduced in 2018; quickly became industry standard
○ Often a starting point for any CI/CD setup, even if using external

providers

Demo: GitHub Actions

Great, your code works! Let’s continue…

● Traditional method of deployment: SSH into your production
server/VM, run git pull, and restart the server

● Multiple problems with this approach:
○ Inefficient: every deploy is manual and takes human time

○ Insecure: Developers/DevOps engineers have direct SSH
access to production, compromise would be bad

○ Incompatible with serverless design: With serverless
architectures, you don’t have a single production server

Motivation

Continuous Delivery, Continuous Deployment

Idea: Automate the deployment to a staging server.
Then automate the deployment to production.

Configuring CD

● Key issue: once we have a built, release-ready artifact (from CI), how do we
get it onto production cloud infrastructure?

● Consider two types of changes:
○ Application logic changed, but supporting infrastructure doesn’t change
○ Supporting infrastructure changed

Configuring CD for Application Logic Changes

Insight: we only need to update compute resources here!

● In general: IaC best practice is to define the containing resource for
frequently changed resources, without defining resource specifics

● e.g. if using container deployments with AWS ECS:
○ Deploy the updated container image to AWS Elastic Container Registry (ECR)
○ Force a new deployment using the updated container build
○ Helpfully, AWS provides reusable GitHub Actions to do this.

Configuring CD for Infrastructure Changes

● Consider whether stateful resources (e.g. databases, S3) need to change
○ Some IaC providers, including CDK and Terraform, support lifecycle policies that prevent

stateful resource deletion if configured

● Separate IaC stacks by resource change frequency
○ e.g. network stack does not change often, data stack changes less frequently; compute stack

changes often
○ Allows only redeploying more frequently changed resources, which is faster and less brittle

● Trigger the infrastructure change automatically
○ e.g. run cdk deploy or terraform apply from GitHub actions
○ At larger companies, this task often goes to infrastructure engineers for manual review

CI/CD has now been configured to
get my code into production! How
do I know it won’t break anything?

Automatic Deployment vs Manual Review

● After code review: new code should be vetted such that it won’t break
production
○ Typical practice at medium+ companies is to require 1-2 approvals for a merge, from those

who are well acquainted with that part of the codebase (“codeowners”)

● Automatically deploying any merged mainline code to production benefits:
○ Development velocity: after code review, no extra human effort is taken to deploy
○ If anything goes wrong, more eyes who could help fix it recently looked at the changed code

● For sensitive changes (e.g. compliance/regulation related, or infrastructure),
automate change deployment after manual approval of staging resource

Even if new code is deployed to production, it may not need to be immediately
accessible to (all) users.

Feature flag: Gate access to new or changed features or functionality by centrally
checking if that feature should be shown to a particular user.

Controlling Code Paths in Production

if flag_provider.query("enable-analytics-cookies"):

 response.set_cookie("analytics", generate_analytics_cookie())

This is complex machinery! How
do we make this all secure?

Security Considerations for CI/CD

● Recall: testing and deploying requires control plane
access to your cloud environment
○ Thus, CI/CD environment must be strongly isolated from dev

environments, as well as other people’s CI/CD instances (for SaaS)
○ Challenge: How do we securely authenticate the CI/CD control

plane to the cloud environment?

● Old way (pre-2021): Store long-lived IAM user access
credentials as encrypted secrets in CI/CD provider
○ Problem: if CI/CD provider is breached, then attackers have

long-lived access to your cloud environment

CI/CD → Cloud Environment, More Securely

● November 2021: GitHub introduces OpenID Connect support for Actions
○ Configure GitHub Actions to retrieve short-lived access tokens for deployment roles

Aside: GitHub Actions OIDC Footgun

● Recall: IAM Role Trust Policy allows
specifying who can assume the role
○ For GitHub Actions, check token fields on the

AWS side to make sure only the correct
repository action assumes the role

● When trust policy is underspecified, any
repository from any owner can assume the
(privileged) deployment role
○ Allows attackers to have (short-lived, but

renewable) cloud environment access

● UK government was affected in mid 2023

CI/CD pipelines are attractive attack
targets due to privileged cloud
environment access, as well as
access to the production codebase.

Next Lecture: Fireside Chat on
Large-Scale Cloud Deployments (2/26)

GUEST LECTURE by Maria Zhang (Google)
Mandatory (graded) attendance

