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Comparing IaC frameworks



POV: CDK/CloudFormation 
State Management



Recall: Terraform

● Written in HCL or JSON

● Purely declarative

● Contains a provider (AWS, Azure, GCP, 
Proxmox, etc) followed by a list of resources



Example of (non-AWS) Terraform
resource "cloudflare_pages_project" "sadsingles" {
 account_id        = var.cloudflare_account_id
 name              = "sadsingles"
 production_branch = "main"

 source {
   type = "github"
   config {
     owner                         = "saligrama"
     repo_name                     = "sadsingles"
     production_branch             = "main"
     deployments_enabled           = true
     production_deployment_enabled = true
   }
 }
}



Why use Terraform vs AWS CDK?

Terraform Pros

● Support for any provider, even niche ones 
(extensible)

● Significantly faster deploys
● State management is portable: local JSON 

file → file in S3 bucket → cloud SaaS
● Lots of ecosystem tooling (Terraform 

Cloud, but also Terragrunt, Atlantis, 
Spacelift, Scalr, Env0, etc…)

● Faster (yes) support for new AWS features

AWS CDK Pros

● Write IaC in a language you’re already 
familiar with

● L2 and L3 constructs make deployment of 
common patterns easier (e.g. 
ApplicationLoadBalancedFargateService)

● Easier to logically organize resources in a 
way AWS is aware of (stacks)



Some other contenders: CDKTF and Pulumi

● More takes on the “write IaC in a language 
where constructs can be generated from 
Typescript” concept
○ CDKTF itself synthesizes to Terraform
○ Pulumi allows you to use AWS CDK constructs, 

including L2 and L3 constructs

● Still have the same footguns associated with 
IaC in an imperative language (e.g., loops)



CS 40 will likely switch to 
Terraform in 2024-2025.



CDKs generally work better in Typescript

● All CDKs are written natively for Typescript, and 
dynamically “translated” to create polyglot libraries for 
other languages
○ JSII: open-source AWS-written package for such translation

● Try to use what you’re familiar with – if that’s Python, 
consider using Python – but probably default to Typescript
○ First-class support for JSON
○ Better dependency and third-party ecosystem for CDK



Example: CDK in Go
lambda := awslambda.NewDockerImageFunction(

   stack,

   jsii.String("GradingLambda"),

   &awslambda.DockerImageFunctionProps{

       Code: awslambda.DockerImageCode_FromImageAsset(

           jsii.String(path.Join(".", "../synthesizer")),

           &awslambda.AssetImageCodeProps{},

       ),

       Architecture: awslambda.Architecture_ARM_64(),

       Tracing:      awslambda.Tracing_ACTIVE,

       Timeout:      awscdk.Duration_Minutes(jsii.Number(5)),

       MemorySize:   jsii.Number(2048),

})



Let IaC manage infrastructure resources, not data

● IaC should track the state of the infrastructure only

● If IaC tracks data, state management becomes difficult
○ e.g. database contents, secret values
○ IaC has no way of knowing the state of the data: this is the domain of application logic

● IaC should create the infrastructure resources to hold the data, but no more
○ Delete/rollback protection can ensure IaC doesn’t delete data resources



Common Security Abuse Vectors



Instance Metadata Service

● For some compute instances, AWS exposes a metadata service (HTTP) that 
code running on the instance can access to get instance info + credentials
○ EC2: 169.254.169.254
○ ECS: 169.254.170.2

● Example usage: what IP address in the VPC is assigned to the ECS task?

curl http://169.254.170.2/v2/metadata | \
jq .Containers[].Networks[].IPv4Addresses

http://169.254.170.2/v2/metadata


Instance Metadata SSRF

● Instance Metadata Service contains sensitive information, since IAM role 
credentials are issued this way

● Proxies that don’t restrict access to metadata endpoint can give attackers a 
foothold into your AWS environment
○ This is known as a Server-Side Request Forgery (SSRF) vulnerability



Example: SSRF → Metadata Service

March 7, 2024



AWS Credential Leakage

● The AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY environment 
variables are how most third-party services auth to AWS
○ These keys are often long-lived and don’t expire
○ If an attacker gains access to these keys, they now have a foothold into your AWS account

● These keys are commonly exposed on:
○ Source code management: GitHub, GitLab, etc.
○ CI/CD platforms: CircleCI, Travis CI, Jenkins, etc.
○ Package repositories: NPM, PyPi, etc.
○ Container registries: Docker Hub, ECR, etc.
○ Frontends
○ Developer laptops (which leads to malware concerns)

● Best practice: use encrypted secrets, or use ephemeral authentication 
methods (e.g., OIDC for GitHub Actions, IAM Identity Center SSO)





What infrastructure did CS40 use?



Provisioning Infrastructure

● Theme: anything that needed Stanford auth, 
but otherwise short, locally stateless requests

● What:
○ DNS A records
○ DNS NS records
○ AWS credits
○ Datadog flags

● Solution: Cloudflare Pages Functions + Canvas 
API + Google OAuth



Autograding: Static Checks

● Problems:
○ cdk synth requires AWS account auth, but Gradescope 

can’t securely auth to anything (no environment 
variable/secret support)

○ cdk synth executes student code, but student code on 
Gradescope can easily hijack the autograder and assign 
itself an arbitrary grade

● Solution: delegate cdk synth capability to a 
Lambda function
○ Gradescope zips your submission and POSTs it to the 

Lambda
○ Lambda runs cdk synth and returns the resulting 

CloudFormation JSON
○ We run OPA static checks on Gradescope – which doesn’t 

execute your code



Autograding: Runtime Checks

● Goal: Make sure the website is usable by an actual human

● Backend: Use Python requests to directly call the backend API, ensure 
functionality by validating responses

● Frontend:
○ Install Chrome, Chrome Web Driver, and selenium in a Docker image
○ Take a screenshot of your Yoctogram login page
○ Use a perceptual hashing library to verify the frontend looks correct



Four Miscellaneous Things



Speculative Decoding

● Idea: Use a small LLM to approximate the behavior of a large LLM for a 
fraction of the cost

● Two LLMs, one large LLM and one small LLM

● Steps:
○ Given a prompt, have the small LLM generate a sequence of tokens
○ Estimate the probability p that the large LLM would generate this same sequence
○ Have some threshold t of acceptable responses
○ If p > t, then return the output from the small LLM
○ If p < t, then query for the expensive LLM



Spot Instances

● Spot instances: revocable instances that cost less than standard instances
○ Can be revoked by AWS with only two minutes notice
○ Useful interruptible workloads

● Way for Amazon to manage unused capacity by providing incentives to 
customers to pay for this unused capacity
○ Accounting for the possibility of burst workloads requiring these spot instances to be 

reclaimed



Reserved Instances

● Opposite of a spot instance, reserve an instance ahead of time for some 
period (usually ~3 years) to get a discount
○ Can be negotiated with AWS if you're a big customer

● Good if you know you're going to need an instance for a long time

● Be careful!  May be stuck paying for an instance you don't really want



Billing Limits

● Almost every service can have a billing limit set
○ Service turns itself off once billing limit is reached rather than continuing to charge

● Difficult to manage at scale due to difficulties in modeling costs across many 
AWS services

● Very useful for small projects with limited budgets (i.e., CS 40 autograder)



Designing Scalable Systems



(Easy) Example: URL Shortener

Task: Design a scalable URL shortener like TinyURL

● Clarifying Questions:
○ Does the user need to be able to specify their own abbreviations?
○ Maximum length of URL?
○ Use cases: How many reads compared to writes?  Number of concurrent accesses?  How 

fast/scalable does it really need to be?

● Answer: A really thin wrapper over DynamoDB
○ Scalable: it's DynamoDB; AWS will infinitely scale without you having to think about what it 

abstracts over
○ Cost effective: only pay for what you use



(Medium) Example: Social Media Site

Task: Design a social media platform like Facebook

● Requirements:
○ Low latency
○ High availability
○ Extremely scalable

● Clarifying Questions:
○ What types of data are we supporting?  What features (e.g., chat, video calls)?
○ How many concurrent users do we expect?  How much data will these users generate?



Example: Social Media Site

Task: Design a social media platform like Facebook

● Understanding the problem
○ Low latency:

■ Some sort of CDN
■ Redis caching

○ High availability:
■ Microservice architecture
■ Redundant services
■ Fault tolerant infrastructure

○ Extremely scalable 
■ Elastic compute, ability to quickly grow clusters
■ Sharded DB



Possible Answer: Social Media Site

● Microservice based architecture: 
○ Image service, Comment service, Like service, Follow service, etc.

● Data model: 
○ Every microservice contains its own (sharded) DB

■ Postgres for transactional DB
■ DynamoDB for KV DB

○ Image service has some sort of blob storage (S3 on AWS), caches presigned URLs in Redis
○ Everything gets a UUID, when a resource is accessed, use UUID to query all relevant services 

for information

● Hosted on ECS, some sort of dynamic scaling

● CDN for caching popular images closer to users





(Hard) Example: Analytics Reporting Service

Task: Design an analytics reporting service that can create a report of user activity 
over a certain interval.  Notify the user when the report is completed

● Context:
○ Assume your website has some analytics which stores information in some DB
○ Assume the it takes a long time to generate the report
○ Assume multiple reports may be requested at the same time by different parties

● Clarifying questions
○ What kind of analytics data are we working with?  What volume?  How is it stored?
○ How scalable does this service need to be?  How many potential concurrent requests?
○ If not explicitly given, anything that determines the context specified above



Example: Analytics Reporting Service

● Understanding the problem

○ Assume your website has some analytics which stores information in some DB
■ Need to query DB to retrieve relevant information
■ Choose what to report and how to report it (answer dependent on the nature of the 

interview and what they told you was in the DB)

○ Assume the it takes a long time to generate the report
■ Don't burn money waiting for an HTTP request to return
■ Notify requester when done

○ Assume multiple reports may be requested at the same time by different parties:
■ Have some way of managing the current report requests



Possible Answer: Analytics Reporting Service

● Standard async pipeline using Lambdas and SQS

● When user initiates report, have one Lambda add an event to the queue

● Presence of messages in queue creates an event that calls a second Lambda
 

● Second Lambda generates the analytics report, notifies user when report is 
generated
○ In an interview: talk about the actual analytics report here (context dependent)

● Advantages of using SQS:
○ Predictable access patterns
○ Async handling is usually more efficient (can allow batching)
○ Reliability: lambda failures can be handled



Choosing the Right Service



Data Storage

● S3: Basically impossible not to use, use anytime you need to store files

● Databases: use whichever managed DB your app is written for
○ Postgres, MongoDB, etc.
○ DynamoDB is well regarded
○ Highly dependent on the data model of your application (recall 1/24 guest lecture)

● In general, there is not that much choice paralysis
○ Use whatever database your app supports that you know how to use



Should I Use a CDN?

● Consider a CDN if
○ Your workload is latency sensitive
○ You are serving media with asymmetric access patterns
○ You are dealing with large amounts of traffic to your application server

● Most applications could benefit from some sort of CDN
○ Usually cuts down on your S3 access costs
○ Offers some implicit DDoS protection



Compute

EC2 (possibly with Auto Scaling) ECS (possibly with Auto Scaling or Fargate)

● Based on AMIs (region specific)

● Full control of OS, networking, storage

● Isolation provided by hypervisor

● Usually used for enterprise workloads or 
when you need access to the underlying 
machine

● Based on Docker Images (global)

● Underlying hardware abstracted away

● Isolation provider by Docker runtime + 
Firecracker VMM (for Fargate)

● Works well with microservices

● Usually used for application logic

In general, we recommend using ECS for most workloads



Everything Else

● Step 1: Ask yourself if your workload can 
benefit from X service

● Step 2: Ask yourself if your workload can 
actually benefit from X service

● Step 3: Ask yourself if the benefits justify 
the cost of X service

● Step 4: Only now consider X service
○ The defaults of EC2/ECS, S3, Route 53, Lambda 

and some DB are enough for most use cases



Good luck with final projects
and the rest of your quarter!


